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D
iversification has been at the
center of finance for over 50 years.
And to paraphrase Markowitz
[1952], diversification is the only

free lunch in finance. Much effort has gone
into developing modern portfolio theory
within the Markowitz mean-variance frame-
work. Perhaps foremost amongst those efforts
is the capital asset pricing model (CAPM)
developed by Sharpe [1964]. While brilliant in
its simplicity and clarity, years of examination
have led to a vigorous debate about whether
the assumptions upon which the model
depends reflect real market conditions and
whether its conclusion can be transposed to
actual portfolio management.

A separate set of arguments concerns the
dynamic aspects of portfolio construction.
Accounting for dynamic changes in the port-
folio has led to an examination of these
dynamic changes as a source of return. Fern-
holz and Shay [1982] stated that constant-pro-
portion portfolios earned additional returns
over the returns earned by buy-and-hold port-
folios. Booth and Fama [1992] described these
additional returns as diversification returns.
Although they provide useful insights, the dif-
ferent examinations of multiperiod rebalancing
effects are not directly useful for portfolio con-
struction because they only deal with port-
folio dynamics after the original weights have
been decided.

Although very useful in describing and
understanding portfolio construction issues,
the mean-variance framework has some prac-
tical problems. For example, while variance
can be estimated with a fair level of confi-
dence, returns are so much more difficult to
estimate that most popular models, such as
CAPM and Black-Litterman, have in one way
or another completely put them aside. It is
now increasingly popular to claim that the
market capitalization–weighted indices are not
efficient. Several alternative empirical solu-
tions have been suggested, such as fundamental
indexation and equal weights.

In this article, we investigate the theo-
retical and empirical properties of diversifica-
tion as a criterion in portfolio construction. We
compare the behavior of the resulting port-
folio to common, simple strategies, such as
market cap–weighted indices, minimum-vari-
ance portfolios, and equal-weight portfolios.

DEFINITION OF THE
DIVERSIFICATION RATIO AND
MOST-DIVERSIFIED PORTFOLIO

We begin by mathematically defining how
we measure the diversification of a portfolio.

Let X1, X2, …, XN be the risky assets of
universe U. For simplification, we will consider
Xi to be stocks. Let V be the covariance matrix
of these assets and C the correlation matrix.
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Let be the vector of asset volatilities.

Any portfolio P will be noted P = (wp1, wp2, …,
wpN), with .

We define the diversification ratio of any portfolio P,
denoted D(P), as the following:

(1)

The diversification ratio is the ratio of the weighted
average of volatilities divided by the portfolio volatility.

Let Γ be a set of linear constraints applied to the
weights of portfolio P. One usual set of constraints is the
long-only constraint (i.e., all weights must be positive).
The portfolio, which under the set of constraints Γ max-
imizes the diversification ratio in universe U, is the Most-
Diversified Portfolio, denoted as M(Γ, U).

An intuitive understanding of the way diversifica-
tion works in portfolio construction can be gained from
the following two examples.

Example 1

Suppose we have an investment universe of two
stocks, A and B, with a correlation strictly lower than 1,
and with respective volatilities of 15% and 30%. In this
case, diversification means that we want both stocks to
equally contribute to portfolio volatility. Their respective
weights in the Most-Diversified Portfolio would thus be
66.6% for stock A and 33.3% for stock B (inversely pro-
portional to volatility).

Example 2

Suppose we have an investment universe of three
stocks. Let us assume that two are banking stocks with a
high correlation of 0.9 and that the third stock, a phar-
maceutical stock, has a correlation of 0.1 with each of the
two banking stocks. Suppose, for simplicity, that the volatil-
ities are all equal. The weights of the Most-Diversified
Portfolio, according to the result just obtained, are 25.7%
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for each of the banking stocks and 48.6% for the phar-
maceutical stock.

THEORETICAL RESULTS

The diversification ratio of any long-only portfolio
will be strictly higher than 1 except when the portfolio
is equivalent to a mono-asset portfolio, in which case the
diversification ratio will be equal to 1.

If the expected excess returns of assets are propor-
tional to their risks (volatilities), then ER(P) = kP′Σ, where
k is a constant, and maximizing D(P) is equivalent to max-
imizing , which is the Sharpe ratio of the portfolio.
In this case, the Most-Diversified Portfolio is also the tan-
gency portfolio.

To provide a better understanding of this ratio, and
also to simplify the math, we transpose the problem to a
synthetic universe in which all the stocks have the same
expected volatility.

Suppose that investors can lend and borrow cash at
the same rate. We can then define the synthetic assets Y1,
Y2, …, YN by

where $ is the risk-free asset. We now have the universe,
US, of the following assets Y1, Y2, …, YN. In this uni-

verse,

the volatility σSi of Yi is equal to 1, and

In , S is a portfolio composed of the

synthetic assets, and VS is the covariance matrix of the

synthetic assets. If we have S′ΣS = 1, then maximizing

D(S) is equivalent to maximizing under constraints

ΓS. Because all Yi have a normalized volatility of 1 and

because correlation does not change with leverage, VS is

equal to the correlation matrix C of our initial assets, so
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that maximizing the diversification ratio is equivalent to

minimizing

(2)

Thus, in a universe in which all stocks have the same
volatility, we minimize the variance, which is indeed the
benefit we expect from diversification.

When building a real portfolio, we need to recon-
struct synthetic assets by holding real assets plus (or minus)
some cash. If S = (wS1, wS2, …, wSN) denotes the optimal
weights for the synthetic assets, then the optimal port-
folio M of real assets will be

PROPERTIES

If C is invertible and Γ = Ø, then S = M(ΓS,US) is
unique, and we have the following analytical results:

(3)

The synthetic asset weights, S, are proportional to
the inverse of the correlation matrix C times 1, a vector
of ones the same size as the number of assets.

Once again, we can transform the synthetic assets
back to the portfolio of original assets by dividing each
synthetic portfolio weight by the volatility of that asset
and rescaling the portfolio to be 100% invested. If we
denote the vector of weights of the original assets as M,
then we can write

(4)

where σ is a diagonal matrix of the asset volatilities.
Now, consider the properties of asset correlation

in the context of the Most-Diversified Portfolio. In a
similar manner, we can calculate the correlation of an
arbitrary portfolio P with the Most-Diversified Port-
folio M. Because M is inversely proportional to σ and
C, we can write
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(5)

This means that the correlation of portfolio P with the
Most-Diversified Portfolio M is proportional to the diver-
sification ratio of portfolio P, namely D(P).

Now, consider the correlations between single stocks
and the Most-Diversified Portfolio. The diversification
ratio of a single stock is 1, because there is no diversifi-
cation. Using Formula (5), we calculate the correlation
of asset i, which has a weight vector wi, whose ith asset’s
weight is 1 and other weights are 0, with the vector of
the Most-Diversified Portfolio holdings M. We obtain

(6)

Remarkably, the correlation of asset i with the Most-
Diversified Portfolio is the same for every one of the assets.
Thus, we can identify the Most-Diversified Portfolio as
being the one in which all assets have the same positive
correlation to it.

The special case that P is the Most-Diversified Port-
folio M in Formula (5) leads us to the result that

(7)

so that we have identified the constant κ. Thus, we can
rewrite the correlation between a general portfolio P and
the Most-Diversified Portfolio M as the ratio of their
diversification ratios, as follows:
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with this information we can obtain a single (diversifica-
tion) factor model which resembles the CAPM in form,
but now identifies the correlation as the ratio of the diver-
sification levels,

(9)

where R represents an excess return over cash, and αP
and εP are the constant and error terms, respectively, nor-
mally associated with regression.

Long-Only Portfolios

In the real world, Γ is usually not empty, and includes
the constraint of having positive weights. As such, the
properties we described for the unconstrained problem
are still true for the subuniverse of securities that is com-
posed of the stocks selected by the constrained Most-
Diversified Portfolio.

The subsequent results focus on the long-only Most-
Diversified Portfolio. Two consequences of this are that
1) the positivity constraint will reduce the potential impact
of estimation errors, and 2) being long-only ensures that
the portfolio will have a positive exposure to the equity
risk premium.

Thus, all non-zero-weighted assets have the iden-
tical correlation to the Most-Diversified Portfolio. Zero-
weighted assets, excluded from the Most-Diversified
Portfolio in the optimization, have correlations to the
Most-Diversified Portfolio that are higher than the non-
zero-weighted assets in the Most-Diversified Portfolio.
This is consistent with identifying the Most-Diversified
Portfolio subject to the constraints applied.

Other Properties

If all of the stocks in the universe have the same
volatility, then the Most-Diversified Portfolio is equal
to the global minimum-variance portfolio. Furthermore, if
we continuously rebalance the Most-Diversified Port-
folio, and because it is a market cap–independent
methodology, the Most-Diversified Portfolio should
get a significant part of the benefits from diversifica-
tion returns when compared to a pure buy-and-hold
strategy (Booth and Fama [1992]).
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EMPIRICAL RESULTS

In this section, we explain the methodology used in
our analysis and the results for Eurozone and U.S. equi-
ties. Additionally, we discuss the biases in the method-
ology and present an analysis of the performance results.
We conclude the section with a review of the issues
relating to stock selection and the uniqueness of the
optimal portfolio.

Methodology

A number of steps need to be addressed before
testing the Most-Diversified Portfolio. First, a universe
of assets must be selected, and the returns data for these
assets must be collected to cover at least a full market
cycle. Care should be taken to establish that the data are
accurate, particularly in regard to splits, dividends, and,
most significantly, survivorship bias.

Given clean returns data, the covariance matrix must
next be estimated. Because this is the full information set
used to construct the portfolio, it is important to examine
the impact of estimation errors on the resulting portfolio.
A variety of ways exists to estimate covariances, such as
simple windows, decayed weighting, GARCH, and
Bayesian update methodologies. Although estimation
errors often occur at the levels of volatility and correla-
tion, the hierarchies of correlations are more stable. Indeed,
we find that portfolios built using differently estimated
covariance matrices have similar characteristics. Changing
the frequency of data and the estimation period has little
impact on the final results. Even portfolios built on for-
ward-looking covariance matrices (having perfect covari-
ance foresight) have only slightly different results than
when using historical covariances.

We must also be aware that optimizers tend to allo-
cate more risk to factors whose volatility has been under-
estimated (see Michaud [1998]). This is especially true
for long–short portfolios built from very large universes
where multicollinearity is likely. A simple way to address
this issue is to add positivity constraints to the optimiza-
tion program. In the case of multicollinearity, the fact
that the optimal portfolio might not be unique is not a
real problem for the portfolio manager—it just provides
more choice, as in choosing between equivalent long-
only portfolios. It is possible to further limit the impact
of estimation errors by adding upper weight limits to the
program.
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For purposes of comparison, we maximize the
diversification ratio, defined in Equation (1), at every
month-end for different universes of securities. We com-
pare the results for the long-only Most-Diversified Port-
folio with the market cap–weighted benchmark,
minimum-variance portfolio, and equal-weight portfolio.
We analyze two different regional equity markets, the
U.S. and the Eurozone.

We use Standard & Poor’s (S&P) 500 Index data from
December 1990 to February 2008 as the daily performance
series for U.S. equities, and the Dow Jones (DJ) Euro Stoxx
Large Cap Index data from December 1990 to February
2008 as the daily performance series for Eurozone equities.

The covariance matrix is computed using 250 days
of daily returns. The starting date for the empirical test
is December 1991. For computational reasons, we exclude
from the universe, for month-end computations, all stocks
having less than a 250-day price history.

Because the portfolios are long-only, all weights
must be positive. We also limit the contribution to risk
to 4% per asset. In order to conform to an asset managers’
framework, we also constrain the month-end weights to
comply with UCITS III rules (i.e., the maximum weight
per security is 10%, and the sum of weights above 5%
must be lower than 40%).

Results for Eurozone and U.S. Equities

The results of the empirical tests for the Most-Diver-
sified Portfolio are summarized in Exhibits 1 and 2. The
Most-Diversified Portfolio consistently delivers superior
risk-adjusted returns in both regions. As expected, it is con-
sistently less risky than the market cap–weighted indices
(i.e., volatility is 13.9% versus 17.9% for Eurozone equities,
and 12.7% versus 13.4% for U.S. equities). The Most-Diver-
sified Portfolio shows a higher Sharpe ratio than the market
cap–weighted benchmark, minimum-variance portfolio,
and equal-weight portfolio over the entire period.

In order to further analyze the behavior during dif-
ferent market conditions, we split the backtest results into
two subperiods:

Subperiod 1—1992 to 2000 (i.e., the end of the
dot-com bubble)
Subperiod 2—2001 to 2008

Biases and Analysis of Performance

It is clear that all market cap–independent method-
ologies tend to be less biased toward large capitalizations

than market cap–weighted indices. Therefore, a compar-
ison of the Most-Diversified Portfolio to market capital-
ization–weighted indices should always show a size bias.
Other biases (relative to market capitalization–weighted
indices) can appear, even as the inverse of the index’s bias.

To measure the importance of factor bias in the
empirical results, we performed a three-factor Fama–
French [1993, 1996] regression of the performance of the
portfolios versus the market, HML (high-minus-low book
value), and SMB (small-minus-big capitalization) factors.
The results are shown in Exhibits 3 and 4.

Exhibit 3 shows that for the full period the inter-
cept is significantly positive for the most-diversified Euro-
zone portfolio, with an annualized excess return (intercept)
of 6.0% and a t-stat of 4.14. These figures compare to
5.1% and 3.51, respectively, for the minimum-variance
portfolio, and 0.6% and 1.16, respectively, for the equal-
weight portfolio. The hierarchy of results is confirmed
over the two subperiods.

Exhibit 4 shows results of the same nature for the
most-diversified U.S. portfolio, with an annualized excess
return (intercept) of 3.1% and a t-stat of 1.83. These fig-
ures compare to 2.2% and 1.40, respectively, for the min-
imum-variance portfolio, and 1.2% and 2.27, respectively,
for the equal-weight portfolio.

More broadly, we analyzed the active returns of
the most-diversified Eurozone portfolio with the
Lehman Brothers Equity Risk Analysis (ERA) factor
model for the period 1999–2008 (i.e., the period of
availability for the factor model). The results, shown in
Exhibit 5, indicate that the dominant factor explaining
the outperformance over the period is specific risk,
meaning that about 18% (out of 48%) of the outper-
formance cannot be explained by the predefined factors
of the model. This performance arises from real stock-
specific risk, omitted common risk factors, and changes
in exposure to factors.

Stock Selection Issues and Uniqueness
of the Optimal Portfolio

If the correlation matrix is not invertible, the solu-
tion may not be unique. But because all possible portfo-
lios bring maximum diversification, we are indifferent to
the solution. We see that, in empirical tests, running the
Most-Diversified Portfolio model on three subuniverses
(obtained by randomly excluding one-third of the uni-
verse each time) gives very similar results.
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Exhibit 6 shows the performance of the Most-
Diversified Eurozone Portfolio and its three subsets versus
its benchmark. The same test on the U.S. universe pro-
duces similar results. These results show that the Most-
Diversified Portfolios tend to allocate risk to risk factors
much more than to specific stocks or sectors, even though
the average number of stocks in a Most-Diversified Portfolio
is relatively low (between 30 and 60).

Diversification Ratio

Exhibit 7 shows the changes in diversification ratios
through time for the Most-Diversified Eurozone Port-
folio and the Eurozone benchmark. We can see that
although the levels of diversification vary through time
as a result of the changes in the levels of correlation, the
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E X H I B I T 1
Comparison of Eurozone Equity Portfolios, 1992–2008

Note: MDP is the Most-Diversified Portfolio. B represents the market cap–weighted benchmark, the Dow Jones EuroStoxx Large Cap Total Return Index.
MV represents a minimum-variance portfolio, and EW represents an equally weighted portfolio, both on the same universe as the benchmark B. The chart
shows total return indices.
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Most-Diversified Portfolio is always about 1.5 times as
diversified as the benchmark.

CONDITIONS FOR OPTIMALITY

Let us consider a world in which investors can
borrow and lend money at the same risk-free rate. We

will assume that the investor’s objective utility function
is to maximize the Sharpe ratio of their portfolio of
risky assets, before leveraging or deleveraging it with
cash. What kind of expected returns would imply the
optimality (in terms of Sharpe ratio) of the different
strategies?
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E X H I B I T 2
Comparison of U.S. Equity Portfolios, 1992–2008

Note: MDP is the Most-Diversified Portfolio. B represents the market cap–weighted benchmark, the Standard & Poor’s (S&P) 500 Total Return Index. MV
represents a minimum-variance portfolio, and EW represents an equally weighted portfolio, both on the same universe as the benchmark B. The exhibit shows
total return indices.
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Most-Diversified Portfolio

Recall that the Most-Diversified Portfolio is optimal
if the stocks’ expected returns are proportional to their
volatilities; that is, E(Ri) = kσi, where k is a constant factor
and σi is the volatility of stock i.

Market Cap–Weighted Benchmark

Considering the CAPM assumptions, a market
cap–weighted benchmark will be optimal, and we can
state

(10)

where E(Ri) is the expected excess return of stock i, E(RB)
is the expected excess return of the benchmark (a proxy
for the market portfolio), and ρi,B is the correlation
between stock i and the benchmark. For simplification
we assume the risk-free rate is 0%.

If we consider E(RB) and σB to be given for the
period considered, we have

E(Ri) = Κρi,Bσi (11)

E R E R E Ri i B i B
i

B
B( ) ( ) ( ),= =β ρ

σ
σ

FALL 2008 THE JOURNAL OF PORTFOLIO MANAGEMENT 47

Monthly data are used. MKT is the benchmark’s excess return over one-month LIBOR EUR; HML is the difference in monthly performance between
Dow Jones Euro Stoxx Large Cap Value and Growth Indices; SMB is the difference in monthly performance between the smallest 30% and the biggest
30% of stocks in the index (in terms of weights); and Intercept is a monthly excess return.

E X H I B I T 3
Fama-French Monthly Regression Coefficients, Eurozone Equities, 1993–2008
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where K is a constant. In other words, the stocks’
expected returns that are implied by the optimality of the
market cap–weighted benchmark are proportional to
their total risk (volatility) and their correlation to the
benchmark.

Minimum-Variance Portfolio

In this case, the expected returns that make the min-
imum-variance portfolio optimal are equal for all assets,

E(Ri) = Κ (12)

Economic Interpretation of the Most-
Diversified Portfolio

What assumptions would explain that the Most-
Diversified Portfolio is better (in terms of Sharpe ratio)
than the market cap–weighted benchmark? We can see
that, although the Most-Diversified Portfolio is ultimately
very different from the benchmark, the implied expected
returns from the Most-Diversified Portfolio are not very
different from those of the market cap–weighted bench-
mark. Actually, the only difference resides in the “cor-
rect pricing” of individual assets’ correlations to the
benchmark. In other words, we need correlations (to the

48 TOWARD MAXIMUM DIVERSIFICATION FALL 2008

Monthly data are used. MKT is the benchmark’s excess return over one-month LIBOR USD; HML is the difference in monthly performance between the
S&P 500 Value and Growth Indices; SMB is the difference in monthly performance between the smallest 30% and the biggest 30% of stocks in the index
(in terms of weights); and Intercept is a monthly excess return.

E X H I B I T 4
Fama-French Monthly Regression Coefficients, U.S. Equities, 1993–2008
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market) to be only partially taken into account by the
market when securities’ prices are determined. Why
would this be the case in the real world?

The following assumptions are consistent with a
market environment that could explain the dominance
of the Most-Diversified Portfolio over market-cap
indices:

• Investors are rational (i.e., all else being equal, if a
security has a higher volatility, investors expect a
higher return).

• The market has enough efficiency to prevent
arbitrage opportunities at the single-stock level
(i.e., security prices reflect all public information;
in other words, securities are correctly priced on a
stand-alone basis).

• Forecasts of volatilities are accurate.
• All other forecasts are either inaccurate or not taken

into account in the pricing of securities.
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Note: The factor model used is the Lehman Brothers Equity Risk Analysis (ERA) model. The returns are computed by cumulating monthly active returns,
which is a different process from taking the difference between cumulative portfolio retrurns and cumulative benchmark returns.

E X H I B I T 5
Active Returns Factor Attribution for Eurozone Most-Diversified Portfolio, April 1999–February 2008

Copyright © 2008



50 TOWARD MAXIMUM DIVERSIFICATION FALL 2008

E X H I B I T 6
Empirical Performance of Eurozone Most-Diversified Portfolios, Full Universe and Three Subsets, 1992–2008

E X H I B I T 7
Comparison of Eurozone Most-Diversified Portfolio and Benchmark Diversification Ratios, 1992–2008
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These assumptions alone, of course, are not enough
for the Most-Diversified Portfolio to be an equilibrium
model.

CONCLUSION

In this article, we provide a mathematical defini-
tion of diversification and describe several implications
of diversification as a goal. Most-Diversified Portfolios
have higher Sharpe ratios than the market cap–weighted
indices and have had both lower volatilities and higher
returns in the long run, which can be interpreted as cap-
turing a bigger part of the risk premium.

Empirical results tend to confirm the value of a the-
oretical framework for diversification. It is difficult to deter-
mine if a portfolio was ex ante on the efficient frontier,
but evidence tends to indicate that the Most-Diversified
Portfolio is more efficient ex post than the market
cap–weighted benchmark, minimum-variance portfolio,
and equal-weight portfolio.

Because the hypotheses in our analysis are not spe-
cific to the equity market, the Most-Diversified-Portfolio
methodology can be adapted to other asset classes. And
the diversification ratio can be viewed as a new measure
of risk that, when combined with the performance of the
Most-Diversified Portfolio, has explanatory power for the
performance of any portfolio within the same universe of
securities.

The goal of the Most-Diversified Portfolio is not
to be an equilibrium model. It can, however, potentially
be transformed into an equilibrium model either by adding
additional assumptions or by adding fundamental valua-
tion criteria, such as earnings, sales, and so forth. Such
additions would allow the model to accommodate dif-
ferent mispricings.

We have defined a portfolio construction method-
ology that can be considered an alternative to other non-
market-cap benchmarks (see, for example, Fernholz and
Shay [1982] and Arnott, Hsu, and Moore [2005]), and, as
such, is a new investment style that favors diversification
and avoids bets based on return prediction or confidence
in the implicit bets of market cap–weighted benchmarks.
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