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Given an investment universe, we consider the vector ρ(w) of correlations of all assets to
a portfolio with weights w. This vector offers a representation equivalent to w and leads
to the notion of ρ-presentative portfolio, that has a positive correlation, or exposure, to
all assets. This class encompasses well-known portfolios, and complements the notion of
representative portfolio, that has positive amounts invested in all assets (e.g. the market-
cap index). We then introduce the concept of maximally ρ-presentative portfolios, that
maximize under no particular constraint an aggregate exposure f(ρ(w)) to all assets, as
measured by some symmetric, increasing and concave real-valued function f . A basic
characterization is established and it is shown that these portfolios are long-only, diver-
sified and form a finite union of polytopes that satisfies a local regularity condition with
respect to changes of the covariance matrix of the assets. Despite its small size, this set

encompasses many well-known and possibly constrained long-only portfolios, bringing
them together in a common framework. This also allowed us characterizing explicitly
the impact of maximum weight constraints on the minimum variance portfolio. Finally,
several theoretical and numerical applications illustrate our results.

Keywords: Portfolio construction; correlation optimization; constraints; representative
portfolios; diversification; maximally rho-presentative portfolios; optimized portfolio sta-
bility; long-only eigenvalues.

1. Introduction

For more than a decade, new quantitative investment processes delivering an expo-
sure to the overall market have attracted significant interest in the field of asset
management. We briefly present some of these long-only strategies whose main
input is the covariance matrix of the assets, and show how they could be rediscov-
ered in the context of the present paper.

A simple portfolio delivering such an exposure that is different from the market
capitalization-weighted index is the equally-weighted portfolio (hereinafter EW).

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.
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This particular choice is not new, with DeMiguel et al. (2009) claiming that it
dates back to 400 AD. Using volatility-adjusted weights as an alternative repre-
sentation for a portfolio naturally leads to the concept of equal-volatility-weighted
portfolio (denoted by EVW). The relative contribution of each asset to the risk of
a portfolio gives another way of representing it, and leads to the concept of port-
folio that equalizes these risk contributions or ERC [see Maillard et al. (2010) and
Spinu (2013)]. Following a very different path, in Fundamental Indexation (Arnott
et al. 2005), the authors proposed equity portfolios with weights proportional to key
accounting measures such as sales, book value and earnings. Such a portfolio is rep-
resentative of a universe in the sense that it invests in each company in proportion
to its “economic footprint” rather than its capitalization.

As we have seen, approaches such as the EW, EVW, ERC and Fundamental
Indexation emerge using alternative representations for portfolio weights, without
explicitly using expected returns information. As we shall see in this paper, (pos-
sibly constrained) optimized portfolios such as the minimum variance [or MV; see
Markowitz (1952)] and the most diversified portfolio [henceforth denoted by MDP;
see Choueifaty & Coignard (2008) and Choueifaty et al. (2013)] can also be obtained
through the representation of a portfolio by its correlations — or exposures — to
all assets.

Finally, when reaching the implementation phase, these long-only investment
processes may be modified in a number of ways. An important consideration for
portfolios that optimize a given objective function is for example the addition of
maximum weight constraints. These are imposed by some regulators and imple-
mented by practitioners, and it is important to understand their impact on the
initial objective. In Jagannathan & Ma (2003), it is shown that imposing such con-
straints for the MV problem is equivalent to minimizing an unconstrained variance
objective using a modified covariance matrix. However, a limitation of the method
is that the modified matrix depends on Lagrange multipliers that are either known
after the MV optimization or determined through a numerically demanding opti-
mization (a constrained max likelihood on matrices).

1.1. Contributions of this paper

A new portfolio representation using correlations. The usual representation
of a portfolio, that consists in reporting its weights in each asset of the investment
universe, may not directly indicate to which degree the portfolio is exposed to a par-
ticular asset. For instance, not holding any financial stock does not necessarily mean
no exposure to the financial sector. This observation prompts a new representation
of portfolios: given a long-short portfolio w, we consider in Sec. 2 its correlation
spectrum ρ(w) that stores its correlations to the assets of the universe and prove
that it carries all the information needed to recover w up to its leverage.

Notions of representativity and ρ-presentativity. The capitalization-weighted
portfolio is usually viewed as being representative of the assets of its universe. Such
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representative portfolios have positive amounts invested across all assets, leading us
to introduce in Sec. 3 the notion of ρ-presentative portfolio, that admits a positive
correlation, or exposure, to all assets. Note that this definition is not limited to
long-only portfolios.

Optimized long-only portfolios such as the MDP and the MV are ρ-presentative
without necessarily holding all the assets. In contrast, the market capitalization
portfolio, the EW or the EVW, invested across all assets, are not necessarily ρ-
presentative. Both categories intersect as, for instance, the ERC resides in both.

Furthermore, portfolios that are ρ-presentative satisfy a fundamental property
that is not true in general: the (not necessarily unique) least correlated long-only
portfolio to a ρ-presentative portfolio is an asset. Using this result, we prove that
a long-only portfolio is always positively correlated to at least one asset and give a
uniform lower bound for this correlation.

Maximally ρ-presentative portfolios. To complement the notion of ρ-
presentative portfolio, we introduce in Sec. 4 the central concept of maximally
ρ-presentative portfolio. By definition, such a portfolio maximizes an aggregate
exposure f(ρ(w)) ∈ R to all assets as measured by some increasing, symmetric and
concave function f . We show that maximally ρ-presentative portfolios are long-only.
To establish this result, the key is to prove that for any portfolio that is not long-
only there always exists a long-only portfolio that is more correlated to all assets. In
addition, we characterize explicitly the set of maximally ρ-presentative portfolios:
these are essentially the long-only portfolios whose exposures form a nonincreas-
ing function of their volatility-adjusted weights. This property implies in turn that
these portfolios are diversified.

Furthermore, we show that these portfolios form a finite union of polytopes and
are quite rare essentially because any permutation of a maximally ρ-presentative
portfolio that is different from it is not maximally ρ-presentative.

Despite its small size, this new class encompasses many well-known portfolios.
For instance the EVW is, amongst all long-short portfolios, the portfolio that max-
imizes its average correlation to all the assets. We also prove that the MDP is
the portfolio that maximizes its minimal correlation to all the assets amongst all
long-short portfolios. We refine this result by showing that the MDP maximizes its
minimal correlation to all long-only factors, defined as factors that are replicable by
possibly leveraged long-only portfolios of assets belonging to the universe. Similar
results are established for the ERC, MV and EW portfolios.

On the impact of maximum weight constraints. We prove in Sec. 5.2 that
a constrained MV or MDP problem with maximum weight 1

k is essentially equiv-
alent to an unconstrained maximization of an average of the k smallest entries
of ρ(w). In addition to proving, for instance, that the constrained MDP is maxi-
mally ρ-presentative, this result characterizes the impact on the objective of these
constraints and is therefore related to Jagannathan & Ma (2003). In our case, the
objective is explicit and does not involve a priori unknown Lagrange multipliers.
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A framework for constructing alternative strategies. We prove in Sec. 5.3
that well-known investment strategies — possibly constrained — maximize an
unconstrained objective that is a function of the spectrum ρ(w). As a result, we
obtain a unifying framework for constructing alternative investment strategies, that
maximize their overall exposure to all assets.

Stability of the set of maximally ρ-presentative portfolios. Relying on the
particular structure of the set of maximally ρ-presentative portfolios, we prove in
Sec. 6 that it is stable whenever the input varies. More precisely, we show that the
distance between two covariance matrices controls locally the distance between the
corresponding sets of maximally ρ-presentative portfolios. Doing so, we introduce
the concept of long-only eigenvalue which is relevant to analyze the stability of
long-only optimized portfolios.

Applications. In Sec. 7.1, we give a theoretical application of our results on con-
strained portfolios by extending the “Core Properties” of Choueifaty et al. (2013)
to the constrained case. In Sec. 7.3, we perform a numerical experiment where we
consider more than 2000 US funds with unknown composition to pinpoint those
that qualify for being maximally ρ-presentative. Doing so we also derive a formula
to compute the realized diversification of a fund with unknown composition, using
time series only.

1.2. Assumptions and notations

Assumption. In this paper, we assume that the covariance matrix of the assets Σ
is a positive-definite and symmetric real matrix. This yields a clear presentation at
the cost of a slight loss of generality. To see this, observe that, using the limiting
case of the Cauchy–Schwarz inequality, this hypothesis is sufficient to prove the
following:

Proposition 1.1. Two portfolios are identical up to leverage if and only if they are
perfectly correlated.

If Σ is only positive semi-definite, the proposition does not hold. However, the state-
ments where we prove that portfolios are identical could be reformulated by claiming
that they are perfectly correlated. As a result, in several places one can weaken our
assumption without weakening significantly the assertions (see Remark 5.9 for a
detailed discussion). Note also that we do not assume in this paper that Σ has
nonnegative entries. This would have shortened some of our proofs (for instance in
Secs. 5.1 or 5.2) but would be less relevant to covariances observed in broad financial
markets. Lastly, in this paper, we do not discuss how Σ is computed in practice and
the data that are used to do so.

Notations. We consider a universe of n ≥ 2 assets and let Σ, C and σ denote
their covariance matrix, correlation matrix and volatilities vector. These matrices
are related by Σ = D(σ)CD(σ), where D(σ) is the diagonal matrix with σ as a
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diagonal. We denote the Euclidean inner product in Rn and its associated norm
by 〈·, ·〉 and ‖ · ‖ respectively. The nonnegative σΣ(w) := 〈Σw, w〉 1

2 is the volatility
of a portfolio with weights w ∈ Rn and ‖w‖1 =

∑n
i=1 |wi| is its leverage. Given w

with σΣ(w) > 0, its Diversification Ratio and its correlation to a portfolio x with
σΣ(x) > 0 are defined by

DRΣ(w) :=
〈w, σ〉
σΣ(w)

and �Σ(w, x) :=
〈Σw, x〉

σΣ(w)σΣ(x)
. (1.1)

The subscript indicates that the matrix Σ is used for the calculations, and will be
omitted when clear from the context. Let us also introduce the set of long-short
unlevered portfolios and its long-only unlevered version:

Π := {w ∈ Rn/‖w‖1 = 1} and Π+ := {w ∈ Π/∀ i ∈ {1, . . . , n}, wi ≥ 0}.
(1.2)

It is important to note that, up to leverage, any nonzero long-short portfolio is
represented within Π.

To simplify our calculations, we shall denote the entrywise multiplication
(respectively, division) between matrices by � (respectively, 	). Whenever we write
that a matrix Σ 
 0 (respectively, Σ � 0), we mean that it is positive-definite
(respectively, positive semi-definite) whereas when two vectors x, y ∈ Rn are such
that x 
 y (respectively, x � y), it means that ∀i, xi > yi (respectively, ∀i, xi ≥ yi).
For any x ∈ Rn, let x(i) denote the ith-order statistic of x, that is defined by the
reordering x(1) ≤ x(2) ≤ · · · ≤ x(n). Alternatively, let x↑ (respectively, x↓) denote
the vector that contains the elements of x sorted in nonincreasing (respectively,
nondecreasing) order. Talking about orderings, a function f : Rn → R is increasing
or order preserving if x 
 y implies that f(x) > f(y) for any x, y ∈ Rn. Such a func-
tion, if continuous, is also nondecreasing since whenever x � y, one has f(x) ≥ f(y)
for any x, y ∈ Rn.

We quickly review the portfolios we consider in this paper starting with the
EW and the EVW defined by wew = 1/n and wevw = 1�σ

〈1,1�σ〉 . The MV wmv

minimizes σΣ over Π+ and the ERC solves for werc � (Σwerc) = n−1σ2(werc)1 in
Π+. The long-only MDP w∗ maximizes DRΣ over Π+. Abusing notations, we call
long-short “MDP” the portfolio w̄ := Σ−1σ/‖Σ−1σ‖1 that maximizes DRΣ over Π
and we always refer to the long-only portfolio when using MDP alone. In addition,
we consider the market capitalization-weighted portfolio denoted by MKT, and a
long-short portfolio called PCA and denoted by wpca defined as any eigenvector
of Σ. We refer to the aforementioned literature for discussions on the existence,
uniqueness and other properties of these portfolios.

2. A New Portfolio Representation Using Correlations

A key aspect of this paper is the use of an alternative portfolio representation that
takes into account the exposure of a portfolio to all assets of the investment universe.
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A candidate for such a representation is the concept of correlation spectrum that
we present in this section.

2.1. Definition and key property of the correlation spectrum

Definition 2.1. The correlation spectrum of a portfolio with weights w ∈ Rn\{0}
is the vector ρΣ(w) ∈ Rn such that for any index i ∈ {1, . . . , n}

ρΣ(w)i := �Σ(w, ei), (2.1)

where ei ∈ Π+ is the single-asset portfolio invested in the asset i.

In other words, ρΣ(w) = σΣ(w)−1(Σw) 	 σ. Note that specializing Σ = C, one
has ρC(w) = σC(w)−1Cw. We may omit the subscript Σ and write ρ(w) instead of
ρΣ(w) when it is perfectly clear that this particular covariance matrix is used in the
calculation.

The correlation spectrum alone allows to compare the signed exposures of a
given portfolio to each asset in the universe. Consider for example a portfolio that
has a positive correlation to asset a that is twice that to asset b: a positive one
standard deviation return of either asset can be expected to result in a positive
portfolio return that is twice as large for asset a than for asset b. Note that another
measure of exposure, namely the marginal risk contribution [see Roncalli (2013)],
will be briefly considered in Sec. 5.2.2.

Finally, we show that, given a fixed leverage, it is equivalent to represent a
long-short portfolio by its weights or by its correlation spectrum.

Proposition 2.2. The mapping w ∈ Π �→ ρ(w) ∈ E := {z ∈ Rn, 〈C−1z, z〉 = 1} is
bijective.

Proof. For w ∈ Π, 〈C−1ρ(w), ρ(w)〉 = σ(w)−2〈Σ−1Σw, Σw〉 = 1. Furthermore,
given z ∈ E , we define ρ−1(z) := Σ−1(z � σ)/‖Σ−1(z � σ)‖1 ∈ Π and verify readily
that ρ ◦ ρ−1 = ρ−1 ◦ ρ = I.

Example 2.3. To illustrate our definition, we pick the MSCI USA universe and
plot in Fig. 1 the independently sorted vectors ρ(w)↓ associated to the EVW, MV,
ERC, MDP, long-short MDP and MKT portfolios.

2.2. Other properties of the correlation spectrum

The following proposition contains a composition formula that gives the expression
of the spectrum of the convex combination of two long-short portfolios as a function
of their individual spectra.

Proposition 2.4. Take two different w0, w1 ∈ Π and θ ∈ (0, 1) with wθ := θw1 +
(1 − θ)w0 ∈ Rn\{0}. Then,

ρ(wθ) = dθ(μθρ(w1) + (1 − μθ)ρ(w0)), (2.2)
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100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
MKT MV MDP EW EVW ERC long-short MDP

Fig. 1. Correlation spectra sorted independently for the MDP, long-short MDP, MV, ERC, EVW
and MKT portfolios. The x-axis represents the rank of a constituent of the MSCI USA and the
y-axis the correlation over January 2014–March 2017 of a portfolio to that stock. The flat region
for the MDP spectrum was mentioned in the First Core Property of Choueifaty et al. (2013).
Indeed, the MDP is more correlated to the stocks it does not hold than to those it holds and it
has the same correlation to the latter ones (see Sec. 7.1 in this paper for a generalization).

with

dθ =
θσ(w1) + (1 − θ)σ(w0)

σ(wθ)
> 1 and μθ =

θσ(w1)
θσ(w1) + (1 − θ)σ(w0)

≥ 0.

Proof. As wθ �= 0,

ρ(wθ) = σ(wθ)
−1Σ(θw1 + (1 − θ)w0) 	 σ (2.3)

= σ(wθ)
−1(θσ(w1)ρ(w1) + (1 − θ)σ(w0)ρ(w0)). (2.4)

Since w1 �= w0 and σΣ is strictly convex then dθ > 1.

This result is reminiscent of the diversification axiom in Artzner et al. (1999)
which states that for a coherent risk measure, the risk associated with a weighted
combination of assets is no larger than the weighted combination of the individual
risks of the assets. Indeed, the scaling dθ that appears in the above formula measures
exactly such an effect. A version of this proposition for an arbitrary number of
portfolios is provided in Appendix A.1.

In the rest of the paper, we shall use the mapping φ : Π+ → Π+ defined by
φ(w) := 1

〈w,σ〉w � σ. It is a bijection and, with x = φ(w), its inverse is given by
w = φ−1(x) := 1

〈x,1�σ〉x	 σ. As shown in the following proposition, the function φ

is helpful as it allows treating assets as if they had identical volatilities.

Proposition 2.5. The function φ is a bijection from Π+ → Π+ and given two
portfolios w1, w2 ∈ Π+,

ρΣ(w1) = ρC(x1), (2.5)

�Σ(w1, w2) = �C(x1, x2), (2.6)

σΣ(w1) = 〈1, x1 	 σ〉−1
σC(x1), (2.7)

DRΣ(w1) = σC(x1)−1 ≥ 1. (2.8)
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Proof. The function φ is well defined on Π+ as 〈w, σ〉 > 0 over this set, the same
goes for φ−1. Then it is easy to check that φ ◦ φ−1 = φ−1 ◦ φ = I, and as a
result that 〈w, σ〉 〈x,1 	 σ〉 = 1. Note that, in the definition of φ, we simply need
that the considered portfolios are not orthogonal to σ which, here, is implied by
Σ 
 0. Recalling that D(σ) is the diagonal matrix with σ on the diagonal, one
has Σ = D(σ)CD(σ). Furthermore ∀w ∈ Π+, x = φ(w) = 〈w, σ〉−1

D(σ)w, so
D(σ)w = 〈x,1 	 σ〉−1

x. Now, ∀w1, w2 ∈ Π+,

σ2
Σ(w1) = 〈Σw1, w1〉 = 〈CD(σ)w1, D(σ)w1〉 = 〈x1,1	 σ〉−2 〈Cx1, x1〉 , (2.9)

with 〈x1,1	 σ〉 > 0. Furthermore, for any w1 ∈ Π+,

DRΣ(w1) =
〈w1, σ〉
σΣ(w1)

=
〈x1,1	 σ〉
〈x1,1	 σ〉

1
σC(x1)

≥ 1, (2.10)

since σC(x1) ≤ 1 given that x1 ∈ Π+. Moreover,

�Σ(w1, w2) =
〈Σw1, w2〉

σΣ(w1)σΣ(w2)
(2.11)

=
〈x1,1	 σ〉 〈x2,1	 σ〉

σC(x1)σC(x2)
〈D(σ)w1, CD(σ)w2〉 (2.12)

= �C(x1, x2). (2.13)

Lastly, since φ(ei) = ei, the last identity implies that ρΣ(w1) = ρC(x1).

3. Notions of Representativity and ρ-presentativity

The capitalization-weighted index is usually regarded as “representative” of its
investment universe, and has by definition a positive weight on each asset. This
consideration leads to the following:

Definition 3.1. A portfolio w ∈ Rn is representative if w 
 0.

This definition has some limitations as the weight of an asset in a portfolio may
not accurately measure the exposure of the portfolio to that asset. Therefore, to
compare the exposure of a portfolio to several stocks we may use a measure that
relies on correlations, prompting the following definition.

Definition 3.2. A portfolio w ∈ Rn\{0} is ρ-presentative if ρ(w) 
 0.

This definition leaves the way open to long-short portfolios as such a portfolio
may be ρ-presentative. Let us now give few examples of ρ-presentative portfolios.

Proposition 3.3. The long-only ERC, MV and MDP are ρ-presentative. The
EW, EVW, the market capitalization-weighted index MKT and a PCA portfolio
are not necessarily ρ-presentative. The long-short Max Sharpe portfolio Σ−1μ is
ρ-presentative if and only if the excess expected returns μ are positive.
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Proof. Let us prove that the MDP is ρ-presentative. To do so let us first establish
that

argmax
w∈Π+

DR(w) = φ−1

(
argmin

x∈Π+
σC(x)

)
. (3.1)

Both w �→ DR(w) and w �→ ρ(w) are well defined on Π+. The continuity over
the compact Π+ of w �→ DR(w) and x �→ σC(x) shows that there exist ele-
ments in Π+ maximizing the former and minimizing the latter. Our claim fol-
lows from Proposition 2.5 that implies DR(w) = σC(x)−1 hence maximizing
DR amounts to minimizing σC . As C 
 0, x∗ = φ(w∗) is unique and the
same holds for w∗. Applying the KKT theorem [cf. Boyd & Vandenberghe (2004)
and Rockafellar (1970)] to minx∈Π+ σC(x) shows that the solution x∗ solves Cx∗ =
σ2

C(x∗)1 + λ, with λ� x∗ = 0 and λ � 0, hence ρC(x∗) = σC(x∗)1 + λσC(x∗)−1.
So min ρC(x∗) = σC(x∗) as x∗ ∈ Π+ has a positive entry associated to a zero entry
of λ. Finally, by Proposition 2.5, ρΣ(w∗) = ρC(x∗) and σC(x∗) = DR(w∗)−1. To
sum up,

min ρΣ(w∗) = min ρC(x∗) = σC(x∗) = DR(w∗)−1 > 0. (3.2)

In particular, the MDP w∗ satisfies ρ(w∗) � DR(w∗)−11 
 0.
Similarly, by the MV first-order condition, Σwmv � σ2(wmv)1, hence, ρ(wmv) �

σ(wmv) 	 σ 
 0. The long-only ERC solves werc � (Σwerc) = n−1σ2(werc)1, hence,
ρ(werc) = n−1σ(werc) 	 (werc �σ) 
 0. Note that this portfolio exhibits a nice fea-
ture if ρ-presentativity is the goal: the lower the correlation to an asset, the higher
its weight. Taking the EW or the EVW portfolio of a large collection of highly
correlated assets to which is added another asset sufficiently negatively correlated
to the others proves that these portfolios are not ρ-presentative. The same argu-
ment holds in theory for the MKT portfolio. Lastly, observe that ∀i ∈ {1, . . . , n},
sgn((ρ(wpca))i) = sgn((wpca)i) so wpca is not necessarily ρ-presentative.

The classes of representative and ρ-presentative portfolios intersect as the ERC
lies in both. However, these two classes are not included in one another: as there
exist representative portfolios that are not ρ-presentative, there are ρ-presentative
portfolios that are not necessarily representative. The MDP is such a portfolio (cf.
for instance Fig. 1). Lastly, the Max Sharpe portfolio is an example of a portfolio
that is not necessarily long-only but that may happen to be ρ-presentative.

Let us pursue with a fundamental property of ρ-presentative portfolios.

Lemma 3.4. Given a ρ-presentative portfolio w, the (not necessarily unique) least
correlated long-only portfolio to w is an asset. Actually, for any w ∈ Π such that
ρ(w) � 0,

min
θ∈Π+

�(w, θ) = min ρ(w). (3.3)

This is based on the identity

∀(w, θ) ∈ (Rn\{0}) × Π+, �(w, θ) = DR(θ)〈φ(θ), ρ(w)〉. (3.4)

1950034-9

In
t. 

J.
 T

he
or

. A
pp

l. 
Fi

na
n.

 2
01

9.
22

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 9
4.

22
8.

18
7.

12
2 

on
 0

7/
09

/2
1.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



January 29, 2020 16:45 WSPC/S0219-0249 104-IJTAF SPI-J071
1950034

T. Froidure, K. Jalalzai & Y. Choueifaty

Proof. The last identity follows from the generalized version of Proposition 2.4
that is in Appendix A.1 but we can also give a short and direct proof as ∀(w, θ) ∈
(Rn\{0}) × Π+,

�(w, θ) =
〈w, Σθ〉

σ(w)σ(θ)
=

〈θ � σ, ρ(w)〉
σ(θ)

=
〈θ, σ〉
σ(θ)

〈φ(θ), ρ(w)〉 = DR(θ) 〈φ(θ), ρ(w)〉 .

(3.5)

To prove the identity (3.3), observe that the infimum over θ is always smaller than
the right-hand side so we just need to focus on the reverse inequality. As φ(θ) ∈ Π+,
∀z ∈ Rn, 〈φ(θ), z〉 ≥ min(z), and so

�(w, θ) = DR(θ) 〈φ(θ), ρ(w)〉 ≥ DR(θ)min ρ(w) ≥ min ρ(w), (3.6)

where we used DR(θ) ≥ 1 and our assumption that guarantees that min ρ(w) ≥ 0.
We conclude the proof of the identity by taking the minimum with respect to
θ ∈ Π+, which exists by continuity of θ �→ �(w, θ) on Π+.

In case ρ(w) 
 0, assume that the min over θ is attained by θ∗ ∈ Π+, then
combining (3.6) and the fact that �(w, θ∗) = min ρ(w), one has DR(θ∗) = 1. As σΣ

is strictly convex, this is possible only if θ∗ is an asset.

The lemma implies that, whenever all entries of Σ are positive, the least cor-
related long-only portfolio to another long-only portfolio is an asset. However, in
general, one cannot drop the assumption ρ(w) � 0 as one can build a counter-
example with a matrix that has negative entries and where we can verify that

min
θ∈Π+

�(w, θ) < min ρ(w) (3.7)

for some portfolios w that are therefore not ρ-presentative. See Fig. 6 for such a
counter-example that can only occur in a non-Euclidean setting where geodesics are
different from segments. Indeed, in a Euclidean setting, given a point in a convex
body, the not necessarily unique point that is furthest from it within the body is
necessarily an extreme point.

A consequence of Lemma 3.4 is derived from its combination with the identity
(3.2).

Proposition 3.5. A long-only portfolio is positively correlated to at least one asset,
since

min
w∈Π+

max ρ(w) ≥ [min ρ(w∗)]2 = [DR(w∗)]−2 > 0, (3.8)

where we recall that w∗ denotes the MDP.

Proof. Given w ∈ Rn\{0} and considering φ as defined before Proposition 2.5,
φ(w∗) ∈ Π+ which implies that

max ρ(w) ≥ 〈φ(w∗), ρ(w)〉 = DR(w∗)−1�(w, w∗) = min ρ(w∗)�(w, w∗), (3.9)

where we applied (3.4) in Lemma 3.4. Then we take on both ends the minimum
[which exists by continuity of max(ρ(·)) and ρ(·, w∗) on the compact Π+] and as
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ρ(w∗) 
 0, we can apply (3.3) in Lemma 3.4:

min
w∈Π+

max ρ(w) ≥ min ρ(w∗) min
w∈Π+

�(w, w∗) = [min ρ(w∗)]2 > 0. (3.10)

As a weak converse of this result, observe that a portfolio w ∈ Rn\{0} that
is ρ-presentative cannot be short-only since both 〈Σw, w〉 > 0 and Σw 
 0. This
direction will be explored further in the next section.

4. Maximally ρ-presentative Portfolios

As we have seen in the previous section, it is possible to build portfolios that are
ρ-presentative, i.e. that have a positive exposure to all assets. In this section, we
introduce a complementary notion by considering portfolios that maximize their
overall exposure to all assets.

4.1. Definition and equivalent characterization

Definition 4.1. A portfolio wf ∈ Rn\{0} is maximally ρ-presentative if there exists
a function f : Rn → R that is increasing, symmetric and concave such that

wf ∈ argmax
Rn\{0}

f ◦ ρ. (4.1)

Let R denote the set of all unlevered maximally ρ-presentative portfolios.

A maximally ρ-presentative portfolio maximizes its exposures to all assets
through an aggregate view offered by f which measures how ρ-presentative a port-
folio is as a whole, given its exposures. Specifically:

(i) f is increasing to advantage a portfolio that is more ρ-presentative than
another. In other words, if ρ(w) 
 ρ(y) then f ◦ ρ(w) > f ◦ ρ(y). This assump-
tion excludes for instance f = ‖ · ‖2.

(ii) f is concave which is consistent with the property of ρ(wθ) in Proposition 2.4.
Furthermore, we shall see that this assumption is key to prove that for fixed
f , there is a unique maximally ρ-presentative portfolio. As a counter-example,
for f(x) =

∑n
i=1 x3

i and Σ = I, optima of (4.1) are the single-asset portfolios.
(iii) f is symmetric, i.e. invariant under a permutation of coordinates, as there is

a priori no reason for it to change if we permute the exposures. This excludes
f = 〈·, θ〉 with θ ∈ Π+\{n−11}.

The examples we just gave will be further discussed in Sec. 5.3 and we shall
see in the sequel how the concepts of ρ-presentative and maximally ρ-presentative
portfolios compare to each other.
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Let us now establish the existence and uniqueness of a such a portfolio for a
given f .

Proposition 4.2. For a concave increasing f, the maximum in (4.1) is reached by
a unique unlevered portfolio.

Proof. Since ρΣ : Π → E = {z, ‖z‖C−1 = 1} is a bijection, one has supΠ f ◦ ρ =
supE f with the left problem having a unique maximum if and only if the same is
true for the right one, so we may focus on the latter one.

Existence: As in finite dimension, any concave function is continuous in the
interior of its domain [see Theorem 10.1 in the monograph of Rockafellar (1970)],
f attains its supremum m∗ on the compact ball E .

Uniqueness: Assuming the contrary, there are z1 �= z2 such that ‖z1‖C−1 =
‖z2‖C−1 = 1 and f(z1) = f(z2) = m∗. Then considering a strict convex combi-
nation zθ of z1 and z2, ‖zθ‖C−1 < 1 by strict convexity of the norm whereas by
concavity of f , f(zθ) ≥ m∗. Since λ �→ ‖zθ + λ1‖C−1 is continuous on [0, +∞)
and tends to +∞ when λ → +∞, then by the intermediate value theorem
∃λ∗ ∈ (0, +∞)/‖zθ + λ∗1‖C−1 = 1. On the other hand, since f is increasing,
f(zθ + λ∗1) > f(zθ) ≥ m∗, hence a contradiction with the definition of m∗.

The following result and ensuing theorem show that long-only portfolios have a
special role amongst long-short portfolios seeking to maximize their exposure to all
assets.

Lemma 4.3. For any y ∈ Π\Π+, there exists w ∈ Π+ such that ρ(w) 
 ρ(y).
However, this cannot hold for long-only portfolios. Indeed, if w ∈ Π, y ∈ Π+ and
ρ(w) � ρ(y) then w = y.

Proof. To prove the first statement, consider the convex problem minC σ2
Σ with

C = {z ∈ Rn/z � 0, Σz � Σy}. It is feasible as we may always consider a rescaled
enough long-only ρ-presentative portfolio and admits a unique solution v since its
objective is strictly convex and the constraints are linear. Without loss of generality,
one can assume that v �= 0 as otherwise Σy � 0 and any long-only unlevered ρ-
presentative w satisfies our first statement.

If we take λ, μ � 0 to be the Lagrange multipliers associated to the constraints
v � 0 and Σ(v − y) � 0, the solution v solves the following KKT conditions:
Σv = λ+Σμ, λ� v = 0 and μ� (Σ(v− y)) = 0. The first two conditions imply that
σ2(v) = 〈Σv, μ〉 and 〈Σv, μ〉 = 〈λ, μ〉 + σ2(μ) ≥ σ2(μ) while the last one implies
〈Σv, μ〉 = 〈Σy, μ〉. Then, as a result of the Cauchy–Schwarz inequality,

σ2(v) = 〈Σv, μ〉 = 〈Σy, μ〉 ≤ σ(y)σ(μ) ≤ σ(y)〈Σv, μ〉 1
2 = σ(y)σ(v). (4.2)

Since v �= 0, we have σ(v) > 0 and therefore σ(v) ≤ σ(y).
Let us prove that σ(v) = σ(y) cannot occur. If the identity holds then all

inequalities in (4.2) are equalities hence 〈λ, μ〉 = 0 and 〈Σy, μ〉 = σ(y)σ(μ). Then
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by the limiting case of the Cauchy–Schwarz inequality, there exists γ ∈ R such that
y = γμ. Combining this observation and the fact that 〈λ, μ〉 = 0 with the first
KKT condition yields 〈Σv, y〉 = 〈λ, y〉 + 〈Σμ, y〉 = γ〈λ, μ〉 + 〈Σy, μ〉 = 〈Σy, μ〉. Put
together with (4.2) this implies that 〈Σv, y〉 = σ(v)σ(y), i.e. �(v, y) = 1, and thus
y = v ∈ Π+. This contradicts our assumption on y.

Therefore one necessarily has σ(v) < σ(y). Consider a long-only ρ-presentative
u that was rescaled enough so that u ∈ C, Σu 
 Σv � Σy and σ(u) > σ(y) > σ(v).
By continuity of σΣ on C, there exists by the intermediate value theorem a strict
convex combination w = αu + (1 − α)v ∈ C with α ∈ (0, 1) such that σ(w) = σ(y).
Then, as Σw = αΣu + (1−α)Σv 
 Σy, one has 1

σ(w)Σw = 1
σ(y)Σw 
 1

σ(y)Σy hence
ρ(w) 
 ρ(y) (the proof is constructive as α is the root of a quadratic equation that
one can readily compute).

The second statement of the lemma is obtained by taking the inner product
with y and dividing by σ(y) in the inequality Σw/σ(w) � Σy/σ(y). This implies
that �(w, y) ≥ 1 hence w = y by Proposition 1.1.

Before getting further we recall that for any v ∈ Rn, v↑ (respectively, v↓)
denotes the vector that contains the elements of v sorted in nonincreasing (respec-
tively, nondecreasing) order and that the bijective φ : Π+ → Π+ is defined
by φ(w) := 1

〈w,σ〉w � σ. Moreover we define (Π+)↑ := {w ∈ Π+/0 ≤ wn

≤ wn−1 ≤ · · · ≤ w1 ≤ 1}. Equipped with these notations and Lemma 4.3 we
are ready to prove the main result of this section.

Theorem 4.4.

(i) Maximally ρ-presentative portfolios are exactly the portfolios w ∈ Π+ that
satisfy

〈φ(w)↑, ρ(w)↓〉 = 〈φ(w), ρ(w)〉. (4.3)

In particular, as 〈φ(w), ρ(w)〉 = DR(w)−1,

R = argmax
w∈Π+

(〈φ(w)↑, ρ(w)↓〉DR(w)). (4.4)

Said otherwise, maximally ρ-presentative portfolios are those long-only portfo-
lios w such that there exists a permutation pw of the assets that sorts their
volatility-adjusted weights φ(w) in nondecreasing order and their exposures
ρ(w) in nonincreasing order.

(ii) Given θ ∈ Π+ and fθ : z ∈ Rn �→ 〈φ(θ)↑, z↓〉, the mapping

PR : θ ∈ Π+ �→ argmax
Π

fθ ◦ ρ (4.5)

is well defined and we have

∀θ ∈ Π+, PR(θ) ∈ R and PR(θ) = θ if and only if θ ∈ R. (4.6)

In addition, PR ◦ φ−1 : (Π+)↑ → R is surjective onto the set of maximally
ρ-presentative portfolios.
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(iii) Representing maximally ρ-presentative portfolios w by their volatility-adjusted
weights φ(w) ∈ Π+, their (n − 1)-dimensional Lebesgue measure λn−1 is such
that

λn−1(φ(R)) ≤ λn−1(Π+)
n!

. (4.7)

(iv) The set R is a finite union of polytopes.

Proof. Let us start by proving that maximally ρ-presentative portfolios are long-
only. Consider yf ∈ argmaxΠ f ◦ ρ for some f that is continuous and increasing.
Then yf ∈ Π+ as otherwise, by Lemma 4.3, ∃wf ∈ Π+ such that ρ(wf ) 
 ρ(yf ),
hence f ◦ ρ(wf ) > f ◦ ρ(yf ) and yf is not optimal.

Now, remark that by the identity (3.4) in Lemma 3.4,

∀θ ∈ Π+, max
w∈Π

〈φ(θ), ρ(w)〉 = 〈φ(θ), ρ(θ)〉 = DR−1(θ) > 0, (4.8)

which means that φ(θ) is an outer normal to the ellipsoid E at ρ(θ).
We pursue by proving that any maximally ρ-presentative wf satisfies (4.3) and

we refer to Fig. 2 for the geometric intuition behind the argument. Considering Sn,
the group of permutations of {1, · · · , n}, let us first note that for any w ∈ Π+,

〈φ(w)↑, ρ(w)↓〉 = min
p∈Sn

〈φ(w), p ◦ ρ(w)〉. (4.9)

Assuming that (4.3) does not hold, there exists p ∈ Sn with 〈φ(wf ), p ◦ ρ(wf ) −
ρ(wf )〉 < 0. Since φ(wf ) is an outer normal to the ellipsoid E at ρ(wf ), there exists
a strict convex combination zμ of p◦ρ(wf ) and ρ(wf ) that lies in the interior of the
domain enclosed by E since

‖zμ‖2
C−1 = 1 + 2μ〈ρ(wf ), p ◦ ρ(wf ) − ρ(wf )〉C−1 + μ2‖p ◦ ρ(wf ) − ρ(wf )‖2

C−1

(4.10)

= 1 + 2μDR(wf )〈φ(wf ), p ◦ ρ(wf ) − ρ(wf )〉 + μ2‖p ◦ ρ(wf ) − ρ(wf )‖2
C−1 ,

(4.11)

which is smaller than 1 for μ > 0 sufficiently small. We may then conclude as in the
proof of the uniqueness in Proposition 4.2. Indeed, since f is concave and symmetric
f(zμ) ≥ f ◦ρ(wf ). Then by the intermediate value theorem ∃λ∗ ∈ (0, +∞) such that
zμ+λ∗1 ∈ E . Thus ∃y ∈ Π such that ρ(y) = zμ+λ∗1. Since f is increasing, f◦ρ(y) >

f(zμ) ≥ f ◦ ρ(wf ) contradicting the optimality of wf . Thus wf satisfies (4.3).
Conversely, given θ ∈ Π+, we consider the function fθ : z �→ minp∈Sn

〈φ(θ), p(z)〉. This mapping as well as (4.5) are well defined as on the one hand
we take the minimum over a finite number of permutations and on the other hand
the objective in (4.5) is continuous over the compact Π. Moreover fθ is increasing,
symmetric and concave on Rn and fθ(z) = 〈φ(θ)↑, z↓〉. So if we take θ ∈ Π+ that
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ρ(w̄)

ρ(wf )

p ◦ ρ(wf )

ρ(wevw)

ρ(w∗)

〈ρ(wf ), n−11〉1
〈ρ(wevw), n−11〉1

φ(wf )

0

E = ρ(Π)

Fig. 2. A schematic view of the geometry behind the proofs and results of Propositions 4.2 and 4.5
and Theorem 4.4. The dashed lines in red are orthogonal as φ(wf ) is an outer normal to the ellipsoid
E at ρ(wf ). The green dashed segment is the set of convex combinations of the permutations
p ◦ρ(wf ). The set ρ(R) of the spectra of maximally ρ-presentative portfolios resides in the orange
region that is the intersection between the surface E and the strip of spectra whose averages are
delimited by (4.31) and (5.1).

satisfies (4.3), then

〈φ(θ), ρ(θ)〉 = fθ ◦ ρ(θ) ≤ max
w∈Π

fθ ◦ ρ(w) = max
w∈Π

min
p∈Sn

〈φ(θ), p ◦ ρ(w)〉 (4.12)

≤ max
w∈Π

〈φ(θ), ρ(w)〉 = 〈φ(θ), ρ(θ)〉,
(4.13)

where in the two last steps we took p = Id and used (4.8). Thus θ maximizes fθ ◦ ρ

and so θ ∈ R.
By the previous analysis, for any portfolio w ∈ R, ∃x := φ(w)↑ ∈ (Π+)↑ such

that w = argmaxy∈Π〈x, ρ(y)↓〉, hence the surjectivity.
Given p ∈ Sn, let Δp := {w ∈ Π+/p◦φ(w) = φ(w)↑, p◦ρ(w) = ρ(w)↓} be the set

of portfolios whose volatility-adjusted weights and spectra are ordered in opposite
directions by the same permutation p. Since Δp = Π+ ∩ {w ∈ Rn/p(w � σ) =
(w�σ)↑, p(Σw	σ) = (Σw	σ)↓}, it is the intersection of the polytope Π+ and of two
sets of the form T ({w ∈ Rn/p(w) = w↑}) and S({w ∈ Rn/p(w) = w↓}) with S and
T being two linear and invertible mappings. The latter sets are therefore polytopes
as they are images of two simplices by two linear mappings. Therefore Δp is also a
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polytope. Then observe that if not empty R ∩ {w ∈ Π+/p(φ(w)) = φ(w)↑} = Δp

and R is a finite union of polytopes since R =
⋃

p∈Sn
Δp.

In the sequel, through the use of φ, we can assume that σ = 1. First, observe
that for w ∈ R and any permutation p such that p(w) �= w, p(w) �∈ R. Indeed,
reasoning as in (4.12), we have that

〈w, ρ(w)〉 ≤ max
w′∈Π

min
q∈Sn

〈w, q ◦ ρ(w′)〉 ≤ max
w′∈Π

〈w, p ◦ ρ(w′)〉 (4.14)

= max
w′∈Π

〈p(w), ρ(w′)〉 = 〈p(w), ρ(p(w))〉.
(4.15)

So, if both w, p(w) ∈ R, one has 〈w↑, ρ(w)↓〉 ≤ 〈p(w)↑, ρ(p(w))↓〉 hence maxΠ+ fw ◦
ρ = fw ◦ρ(w) ≤ fw ◦ρ(p(w)). As by Proposition 4.2, fw admits a unique maximum,
p(w) = w. Note that this also tells us that if w ∈ R, then for any permutation p

such that p(w) �= w, one has σΣ(w) < σΣ(p(w)).
We are now ready to prove that the measure of R is small as compared to that of

Π+. We remark that by (4.3) — that we have now proven — R is closed, hence λn−1-
measurable for the (n − 1)-dimensional Lebesgue measure λn−1. Now, let N ⊂ Π+

be the set of portfolios with each having at least two identical weights. Then its
measure λn−1(N ) = 0. Thus, if R′ = R \ N , the set of maximally ρ-presentative
portfolios that each have distinct coordinates, then

λn−1(R) =
∑

p∈Sn

λn−1[R′ ∩ {w ∈ Π+, p(w) = w↑}] (4.16)

=
∑

p∈Sn

λn−1[p(R′ ∩ {w ∈ Π+, p(w) = w↑})], (4.17)

since permutations are isometries. Now as any permutation of w ∈ R that is distinct
from it is not in R, the measure of R is equal to the measure of the union of the
disjoint sets p(R′∩{w ∈ Π+, p(w) = w↑}) that all belong to (Π+)↑ and is therefore
smaller than λn−1(Π+)/n!.

This theorem shows that the exposures of a maximally ρ-presentative port-
folio form essentially a nonincreasing function of its volatility-adjusted weights.
This theorem also shows that maximally ρ-presentative portfolios are rare amongst
all long-only portfolios. For example, given n assets, if one drew uniformly the
volatility-adjusted weights of N long-only portfolios, there are less than N

n! chance
to have drawn those of a maximally ρ-presentative portfolio.

4.2. Maximally ρ-presentative portfolios are diversified

The previous characterization allows to prove that maximally ρ-presentative
portfolios are diversified in the sense that their Diversification Ratio is never
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less than that of an EVW portfolio. More precisely, we have the following
proposition.

Proposition 4.5. A maximally ρ-presentative portfolio wf satisfies the bounds

0 <
DR(wevw)

�(wf , wevw)
≤ DR(wf ) ≤ DR(w∗)�(wf , w∗), (4.18)

where we recall that w∗ denotes the MDP.
In terms of the objective f, we have the following bounds :

f(DR(w∗)−11) ≤ f ◦ ρ(wf ) ≤ f(DR(wevw)−11). (4.19)

Proof of (4.18). By Proposition 2.5, the identity (3.4) in Lemma 3.4 and the
characterization (4.3),

DR−1(wf ) = min
p∈Sn

〈p ◦ φ(wf ), ρΣ(wf )〉 (4.20)

= min
p∈Sn

〈p(xf ), ρC(xf )〉 (4.21)

≤ 〈ρC(xf ), n−11〉 (4.22)

= DR−1(wevw)�(wf , wevw). (4.23)

Since by Theorem 4.4, wf ∈ Π+ then DR(wf ) ≤ DR(w∗)�(wf , w∗) by the Second
Core Property in Choueifaty et al. (2013) (this latter result will be generalized in
Proposition 7.2). This finishes the proof of (4.18).

Proof of (4.19). Considering the shift operator S(x1, . . . , xn) = (x2, . . . , xn, x1),

∀w ∈ Rn\{0}, f ◦ ρ(w) =
1
n

n∑
k=1

f ◦ ρ(w) (4.24)

=
1
n

n∑
k=1

f(Skρ(w)) (4.25)

≤ f

(
1
n

n∑
k=1

Skρ(w)

)
(4.26)

= f(〈ρ(w), n−11〉1) (4.27)

= f(〈ρ(w), wew〉1), (4.28)

where we invoked the symmetry and the concavity. Then, invoking (3.4) in
Lemma 3.4, for any w ∈ Rn\{0},

f ◦ ρ(w) ≤ f(〈ρ(w), wew〉1) = f(〈ρ(w), φ(wevw)〉1) = f(DR(wevw)−1
�(w, wevw)1).

(4.29)
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Therefore, since f is increasing, maxΠ f ◦ρ ≤ f(DR(wevw)−11) whereas on the other
hand by (3.2) and (4.29),

f(DR(w∗)−11) = f(min ρ(w∗)1) ≤ f ◦ ρ(w∗) ≤ max
Π

f ◦ ρ ≤ f(〈ρ(wf ), n−11〉1).

(4.30)

Inequalities (4.29) and (4.30) are illustrated in Fig. 2.

Portfolios that are ρ-presentative are exactly those that are positively correlated
with all long-only portfolios. In general, a maximally ρ-presentative portfolio is
not ρ-presentative. However, we shall see in the following definition and ensuing
proposition how these two concepts come together.

Definition 4.6. A portfolio w ∈ Rn\{0} is weakly ρ-presentative if its average
exposure is positive, i.e. 〈ρ(w),1〉 > 0.

Proposition 4.7. A maximally ρ-presentative portfolio wf is weakly ρ-presentative
and we have a bound for its average exposure that is uniform in f and that involves
the MDP w∗:

n−1〈ρ(wf ),1〉 ≥ DR−1(wf ) ≥ min ρ(w∗) > 0. (4.31)

Maximally ρ-presentative portfolios are positively correlated to a special long-only
portfolio, namely the EVW. In particular,

�(wf , wevw) ≥ DR(wevw)
DR(w∗)

. (4.32)

Proof. Combining (3.2) and (4.18) we obtain (4.31). Also, as f is increasing, we
get n−1〈ρ(wf ),1〉 ≥ min ρ(w∗) directly from (4.30) without this time relying on
Theorem 4.4. Inequality (4.18) yields directly (4.32).

According to (4.18), portfolios reduced to assets — and whose DR equals one —
are obviously long-only but never maximally ρ-presentative. In the following proof,
we are going to consider another example of a long-only portfolio that is never
maximally ρ-presentative, namely

w� ∈ argmin
w∈Π+

�(w, wevw). (4.33)

This portfolio may happen to be different from any asset as soon as the EVW
is not ρ-presentative (see Lemma 3.4 and the remark below it). As indicated by
the previous theorem, many long-only portfolios are not maximally ρ-presentative.
In particular, considering the limiting case of inequality (4.32) with w∗ = wevw,
it appears that there is only one maximally ρ-presentative portfolio which is the
EVW/MDP. This particular case occurs if and only if 1 is an eigenvector of the
correlation matrix, as shown by the KKT conditions given by the MDP problem.
Nonetheless, in general, R is not a singleton but it is not large either. In fact, in
the following proposition, we show that there are large open regions of Π+ with no
maximally ρ-presentative portfolios.
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Proposition 4.8. The set of maximally ρ-presentative portfolios satisfies the fol-
lowing inclusions:

R ⊂ F :=
{

w ∈ Π+, �(w, wevw) ≥ DR(wevw)
DR(w)

}
(4.34)

⊂ F̃ :=
{

w ∈ Π+, �(w, wevw) ≥ DR(wevw)
DR(w∗)

}
� Π+. (4.35)

Moreover, both F and F̃ are closed convex sets.

In particular, the tangent hyperplane to F at wevw separates Π+ into two sets such
that one of them does not contain any maximally ρ-presentative portfolio.

Lastly, if the long-short MDP w̄ �= w∗, the inclusion R ⊂ F̃ holds true even if we
consider a strict inequality in the definition of F̃ .

Proof. Step 1. The inclusion R ⊂ F follows from (4.18). Given w̄ = Σ−1σ, we
remark that for any w ∈ Π,

DR(w̄)�(w̄, w) =
〈σ, Σ−1σ〉
σΣ(Σ−1σ)2

〈ΣΣ−1σ, w〉
σΣ(w)

=
〈σ, Σ−1σ〉

〈ΣΣ−1σ, Σ−1σ〉
〈σ, w〉
σΣ(w)

= 1 × DR(w).

(4.36)

Combining this identity with (4.18) yields ∀w ∈ R, �(wevw, w̄) ≤ �(w, wevw)�(w, w̄)
which, letting λ := 〈Σwevw, w̄〉, can be rewritten as λσ(w)2 ≤ 〈Σw, wevw〉〈Σw, w̄〉 =
1
4 (〈w, Σ(w̄ + wevw)〉2 − 〈w, Σ(w̄ − wevw)〉2). Then considering the matrix M :=
λΣ + 1

4 (Σ(w̄ − wevw))(Σ(w̄ − wevw))′ we may rewrite F = {w ∈ Π+, ‖w‖M ≤
〈w, 1

2Σ(wevw + w̄)〉} where we used the fact that ∀w ∈ F , 〈w, Σ(w̄ + wevw)〉 ≥ 0.
Indeed, by definition of F , 〈w, Σwevw〉 ≥ 0 and ∀w ∈ F ⊂ Π+, 〈w, Σw̄〉 ≥ 0 since this
is true in Π+ by (4.36). Note that λ > 0 once again by (4.36) so M 
 0 and therefore
F is closed and convex as it is the intersection of a closed and nondegenerate
hyperbolic cone with the regular simplex Π+. The rest of the claim follows from the
fact that wevw lies on the boundary of F and in the interior of Π+.

Step 2. As ∀w ∈ Π+, DR(w∗) ≥ DR(w), F ⊂ F̃ . To establish F̃ � Π+,
let us prove that O1 := {w 
 0, �(w, wevw)DR(w∗) < DR(wevw)} is not empty.
Considering (4.29) we are tempted to take the minimum on both sides and to do
so let w� ∈ argminw∈Π+ �(w, wevw) that does not depend on f and that exists as
the objective is continuous on the compact Π+. As �(w�, wevw) ≤ min ρ(wevw), we
have by (4.29) f ◦ ρ(w�) ≤ f(DR(wevw)−1 min ρ(wevw)1). If min ρ(wevw) > 0, then
as DR(wevw) > 1, f ◦ ρ(w�) < f(min ρ(wevw)1) ≤ f ◦ ρ(wevw). Otherwise, we know
there exists a ρ-presentative u ∈ Rn\{0} such that min ρ(wevw) ≤ 0 < min ρ(u)
and thus f ◦ ρ(w�) < f(DR(wevw)−1 min ρ(u)1) < f ◦ ρ(u) since DR(wevw) > 1.
All in all, there exists w� ∈ Π+ such that f ◦ ρ(w�) < maxRn\{0} f ◦ ρ, i.e. w� is
not maximally ρ-presentative. Note that one cannot expect ρ(w�) ≺ ρ(wevw) as
it contradicts Lemma 4.3. We recall [see (4.31)] that a maximally ρ-presentative
wf is such that n−1〈ρ(wf ),1〉 ≥ min ρ(w∗). Then equipping Rn with the usual
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topology, let A := {w ∈ Rn, w 
 0}, F := A its topological closure and the open
set O := {w ∈ Rn\{0}, n−1〈ρ(w),1〉 < min ρ(w∗)}. So if w ∈ O then w cannot be
maximally ρ-presentative. We verify that F ∩ O �= ∅. Using twice Lemma 3.4 and
then (3.2),

DR(wevw)〈ρ(w�), wew〉 = �(w�, wevw) (4.37)

≤ min ρ(wevw) (4.38)

≤ 〈φ(w∗), ρ(wevw)〉 (4.39)

= �(wevw, w∗)DR(w∗)−1 (4.40)

≤ min ρ(w∗), (4.41)

hence 〈ρ(w�), wew〉 < min ρ(w∗) which shows that w� ∈ O ∩ F . However by Propo-
sition 5 in Sec. 1 in Chap. 1 of Bourbaki (1961), O ∩ F = O ∩ A ⊂ O ∩ A which
proves that w� ∈ O ∩ A and that O1 = O ∩ A �= ∅. The fact that O1 is an open set
and that O1 ⊂ O proves our claim.

To prove that F̃ is convex let us remark that F̃ = {w ∈ Π+, n−1〈ρ(w),1〉 ≥
min ρ(w∗)} = {w ∈ Π+, n−1〈Σw, σ−1〉 ≥ σ(w)min ρ(w∗)} which is the intersection
of Π+ with a sublevel of a convex function, hence convex. To finish, let us now
consider the equality case in the definition of F̃ . For any wf ∈ R, it can equivalently
be written 〈n−11, ρ(wf )〉 = min ρ(w∗). In this case, (4.30) implies f ◦ ρ(wf ) =
f ◦ ρ(w∗) and as wf is unique wf = w∗ and thus 〈n−11, ρ(w∗)〉 = min ρ(w∗) which
implies in turn wf = w∗ = w̄.

4.3. Further comments on maximally ρ-presentative portfolios

Before closing this section, let us make few remarks regarding the concept of maxi-
mally ρ-presentative portfolios. First, the symmetry of a function f that yields such
a portfolio is important. Indeed, for any measure of exposure considered, there is
no reason for the aggregated exposure of any portfolio to depend on the ordering
of the assets. Now, without this assumption, it can be noted that any long-only
portfolio θ would solve (4.1) using the increasing and linear function f = 〈φ(θ), ·〉.

Second, a parallel can be drawn between the mean-variance utility criterion
used for portfolio construction (Markowitz 1952) and the objective maximized in
this section. Indeed, the function f being increasing by assumption, it will tend
to favor portfolios with a higher average exposure. Also, as f is symmetric and
concave, it is Schur concave [see Marshall et al. (1979)]. Therefore, for portfolios
having a given average exposure, those that have exposures that are “less spread
out” [in the words of Marshall et al. (1979)] will be favored.

In a nutshell, one could view each f generating a maximally ρ-presentative
portfolio as providing a particular trade-off between the average and the dispersion
of the spectrum of a portfolio. To illustrate this idea, we define E(v) and Var(v) to
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be the mean and variance of v ∈ Rn and remark that

f(ρ(w)) = E(ρ(w)) − λ

2
Var(ρ(w)) (4.42)

is in fact an objective that satisfies Definition 4.1 for λ ∈ [0, 1). Indeed, f is concave
symmetric if λ ≥ 0 (hence Schur concave) but increasing only for λ < 1. Remark
that the rightmost term could also be modified to take into account interactions
between exposures.

Example 4.9. We conclude this section with Figs. 3 and 4 where we depict the
sets of maximally ρ-presentative portfolios R that we got for, respectively, three
and four assets whose covariance matrices are

Σ1 =

⎛
⎜⎜⎝

1 −0.4 −0.8

−0.4 1 0.7

−0.8 0.7 1

⎞
⎟⎟⎠ , Σ2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 −0.7 0.2

0 1 −0.3 −0.6

−0.7 −0.3 1 0.5

0.2 −0.6 0.5 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.43)

Fig. 3. For n = 3 assets, we represent the regular simplex Π+ along with the set of maximally
ρ-presentative portfolios R (in yellow), the sets F (in dark violet) and F̃ (whose complement in
Π+ is indicated in light violet). From left to right the bullets depict the long-short MDP, MDP
and EVW with the latter two being maximally ρ-presentative as we are going to see. Note that the
long-short MDP and EVW lie on the boundary of the ellipsoid that determines F . The tangent
hyperplane to F at wevw separates Π+ into two sets such that one of them (depicted in pink) does
not contain any maximally ρ-presentative portfolio.
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Fig. 4. For n = 4 assets, we represent the set of maximally ρ-presentative portfolios {(w1, w2, w3) ∈
[0, 1)3/(w1, w2, w3, 1 − w1 − w2 − w3) ∈ R} that is the union of polytopes. From left to right the
large bullets depict the MDP, ERC and EVW that are indeed maximally ρ-presentative as we are
going to see. In Sec. 5.2.1, we shall also see that the constrained MDPs define a continuous path
(depicted in green) within R that connects the EVW and the MDP.

5. A Framework for Constructing Alternative Strategies

In this section, we investigate whether well-known long-only portfolios such as the
EW, EVW and ERC, as well as the MV and MDP with maximum weight con-
straints, are maximally ρ-presentative. Doing so, we find alternative definitions of
these portfolios as maximizers of basic unconstrained objectives. We obtain a uni-
fying framework for constructing portfolios as a result, and identify in the case of
the constrained MV and MDP the impact of maximum weight constraints on their
unconstrained objectives.

5.1. Alternative definitions of well-known portfolios

As shown in Sec. 3, the MV, MDP and ERC are ρ-presentative. We investigate
in this subsection whether these portfolios but also the EW and the EVW are
maximally ρ-presentative.

5.1.1. The equal volatility-weighted portfolio

To improve the overall exposure of a portfolio one may maximize the average of its
correlations to the assets.

Proposition 5.1. The EVW is maximally ρ-presentative as it is the unlevered
portfolio that maximizes its average correlation to all the assets amongst all nonzero
long-short portfolios. Said otherwise,

wevw = argmax
w∈Π

〈ρ(w),1〉. (5.1)

Proof. For w ∈ Π, 〈1, ρ(w)〉 = σΣ(w)−1 〈1 	 σ, Σw〉 = σΣ(1	 σ)�(w, wevw) that
is maximized by wevw and any other such unlevered portfolio is perfectly correlated
to it and thus identical by Proposition 1.1.
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The fact that the optimum over long-short portfolios is attained by a unique
long-only portfolio can also be derived from Lemma 4.3 and Proposition 4.2 without
exhibiting the solution. Moreover, let us recall that even though the EVW is maxi-
mally ρ-presentative it is not necessarily ρ-presentative, as was shown in Propo-
sition 3.3. However, as expected, it is weakly ρ-presentative as 〈1, ρ(wevw)〉 =
σΣ(1	 σ) > 0.

5.1.2. The most diversified portfolio

We may wonder whether it is possible to build a portfolio that is both ρ-presentative
and maximally ρ-presentative. For a positive answer, let us focus on portfolios that
maximize their minimal exposure.

Proposition 5.2. The MDP w∗ is the unlevered portfolio that maximizes its min-
imal correlation to all assets amongst all long-short portfolios. Moreover, amongst
long-short portfolios, the MDP is the unlevered portfolio that maximizes the mini-
mum correlation to any long-only portfolio. Said otherwise,

argmax
w∈Π+

DR(w) = argmax
w∈Π

min ρ(w) = argmax
w∈Π

min
θ∈Π+

�(w, θ). (5.2)

In fact, ∀(y, w) ∈ (Rn\{0})× Π+,

min ρ(y) ≤ min ρ(w∗) = min
θ∈Π+

�(w∗, θ) = DR(w∗)−1 ≤ DR(w)−1. (5.3)

In addition to being ρ-presentative, the MDP is also maximally ρ-presentative.

Proof. We start with the first claim of the proposition. Let w ∈ Rn\{0} then given
that φ(w∗) ∈ Π+,

min ρ(w) ≤ 〈φ(w∗), ρ(w)〉 = DR(w∗)−1
�(w, w∗) = min ρ(w∗)�(w, w∗), (5.4)

where we used the identities (3.4) and (3.2). Taking the supremum on Π on both
ends proves that it is attained by w∗ and any other such portfolio y∗ ∈ Π satisfies
min ρ(w∗) = min ρ(y∗) ≤ min ρ(w∗)�(y∗, w∗) and is thus perfectly correlated to w∗

as min ρ(w∗) > 0 by (3.2), hence y∗ = w∗ by Proposition 1.1.
It remains to prove the second identity in (5.2). As minθ∈Π+ �(w, θ) ≤ min ρ(w)

with equality for w = w∗ by Lemma 3.4, one has w∗ ∈ argmaxw∈Π minθ∈Π+ �(w, θ).
Now for any y∗ in the rightmost set,

0 < min ρ(w∗) = min
θ∈Π+

�(w∗, θ) = min
θ∈Π+

�(y∗, θ) ≤ min ρ(y∗),

which proves that y∗ is ρ-presentative so by Lemma 3.4 the last inequality is an
identity. Then taking w = y∗ in (5.4) and simplifying by min ρ(y∗) = min ρ(w∗) on
both ends, we obtain �(y∗, w∗) ≥ 1 hence y∗ = w∗ by Proposition 1.1.

This proposition proves that, amongst all long-short unlevered portfolios, the
MDP is the portfolio that maximizes its minimal exposure to all long-only portfolios.
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As such, the MDP maximizes its lowest exposure to all long-only factors, defined as
factors that are replicable by leveraged long-only portfolios of assets belonging to
the universe.

Remark 5.3. In view of these results, one could think of constructing long-only
portfolios that minimize their maximal exposure, in the spirit of a minimum variance
approach. Formally, one may do so by solving

min
w∈Π+

max ρ(w). (5.5)

This problem that we already encountered in Proposition 3.5 may admit many local
minima and not necessarily a unique global solution. This makes this approach chal-
lenging when reaching the implementation phase in a financial setting. Furthermore,
the set of optima of the min–max problem may not contain the solution of the max–
min problem. One may verify numerically both of these remarks by considering three
assets with Σ = C, C1,2 = C1,3 ≥ 0.7, C2,3 < 0.4 and C 
 0.

5.1.3. The equal risk contribution portfolio

Having considered some basic functions f , we pursue with the natural logarithm to
prove that the ERC is maximally ρ-presentative.

Proposition 5.4. The ERC is maximally ρ-presentative since

werc = argmax
w∈Π

〈ln(ρ(w)),1〉, (5.6)

where the natural logarithm is taken entry-wise with the convention ln ≡ −∞ on
[−1, 0].
Furthermore,

DR(wevw) ≤ DR(werc) ≤ DR(w∗) and �(werc, wevw) ≥ DR(wevw)
DR(w∗)

. (5.7)

Proof. Consider f : Rn → [−∞, 0] defined by x �→ 〈ln(x),1〉 with the convention
ln ≡ −∞ on (−∞, 0]. As f admits infinite values its domain is different from Rn so
we need to show that supΠ f ◦ ρ is indeed attained. As there exists a ρ-presentative
portfolio u ∈ Π+, there exists ε > 0 such that ρ(u) > ε1 and thus 〈ln(ρ(u)),1〉 >

n ln(ε). So we can narrow our search to {w ∈ Π, 〈ln(ρ(w)),1〉 ≥ n ln(ε)/2} which is
bounded and closed — by the continuity of w �→ 〈ln(ρ(w)),1〉 — and thus compact.
This justifies that the sup is attained.

To deal only with finite values in the objective, we can add the nonbinding con-
straint 〈ln(ρ(w)),1〉 ≥ ln(ε) in the maximization problem. However as any portfolio
w that satisfies this constraint is such that

∏n
i=1 ρ(w)i ≥ ε with ρ(w)i ∈ (0, 1],

necessarily ρ(w) � ε1 which in turn implies that Σw � σΣ(w)εσ � (minΠ σΣ)εσ.

The objective remains finite under this new constraint which is less restrictive and
not binding either.
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Moreover, the optimization is performed over Π and by 0-homogeneity of ρ, this
corresponds to three exclusive cases: either 〈1, w〉 = 1 or 〈1, w〉 = 0 or 〈1, w〉 = −1.
By Lemma 4.3, given a long-short portfolio there is always a long-only portfolio that
improves the objective so we know that any solution is in Π+ and as a consequence
we can discard the two latter nonbinding constraints and keep only 〈1, w〉 = 1

To sum up, we justified the following identity:

max
w∈Π

〈ln(ρ(w)),1〉 = max{〈ln(ρ(w)),1〉/〈w,1〉 = 1, Σw � ασ}, (5.8)

where we set α = (minΠ σΣ)ε. The objective is finite and continuously differentiable
over a set of linear constraints so we may apply the KKT theorem. However, as
Σw � ασ is not binding, it will not appear in the KKT conditions. Now, if w

denotes the maximizer of the latter problem, the KKT condition reads ∇w(w �→
n
2 ln(σ2(w))−〈ln(Σw),1〉)(w) = μ1 with μ ∈ R. Computing the differential, we get

nΣw/σ2(w) = Σ(1 	 Σw) + μ1, (5.9)

and then taking the inner product with w we observe that μ = 0. Therefore, com-
posing with Σ−1 we get Σw � w = n−1σ2(w)1 which, by Corollary 1.2 in Spinu
(2013), is solved by a unique portfolio that is the ERC.

Finally, as werc ∈ R, the remaining inequalities follow from Proposition 4.5.

In this proposition, the inequalities between the Diversification Ratios of the
EVW, ERC and MDP are the analogs of those obtained with their volatilities in
Appendix A3 of Maillard et al. (2010). Furthermore, as noted just before Propo-
sition 4.8, if 1 is an eigenvector of the correlation matrix the inequalities of the
previous proposition imply that werc = wevw = w∗ which is in this case the unique
maximally ρ-presentative portfolio.

Now, let us remark that invoking statement (i) in Theorem 4.4, it is clear from
the identity

ρ(werc) = n−1σ(werc) 	 (werc � σ) = n−1DR−1(werc) 	 φ(werc) (5.10)

that the ERC is indeed maximally ρ-presentative. However, we went through the
effort of the previous analysis to not only give a direct proof of this result but
also exhibit a nontrivial objective that is a function of ρ(w). In particular, this
objective does not involve explicit long-only constraints as for usual formulations
of this problem, which in the absence of such constraints would lead to 2n − 1
non long-only solutions as shown in Proposition 1.3 in Spinu (2013). This suggests
alternative ways of computing the ERC that could complement the approach taken
in that paper.

5.1.4. The minimum variance portfolio

In the same spirit as in the previous subsections, we characterize MV portfolios
using the spectrum ρ(w).
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Proposition 5.5. One has

min
w∈Π+

σ(w) = max
w∈Rn\{0}

min(ρ(w) � σ), (5.11)

and the maximum is attained by a unique portfolio (up to leverage) that is the MV.
In fact, ∀(y, w) ∈ (Rn\{0})× Π+,

min(ρ(y) � σ) ≤ min(ρ(wmv) � σ) = σ(wmv) ≤ σ(w). (5.12)

Furthermore, the MV is not necessarily maximally ρ-presentative.

Proof. Let f : y ∈ Π �→ min(ρ(y) � σ), then if f(y) ≥ σ(wmv), necessarily Σy
σ(y) �

σ(wmv)1 which implies ρ(y, wmv) = 1 hence y = wmv. This proves that {f ≥
σ(wmv)} ⊂ {wmv}. To check that the superlevel is not empty we remark that
f(wmv) ≥ σ(wmv). This follows from the KKT theorem applied to minΠ+ σΣ that
shows that ∃λ � 0 and Σwmv/σ(wmv) = σ(wmv)1 + λ, hence the claim.

Finally, to be maximally ρ-presentative, by Proposition 4.7, the MV needs to be
weakly ρ-presentative and to satisfy the bound �(wmv, wevw) ≥ DR(wevw)/DR(w∗).
Consider a situation where all nondiagonal correlations are identical: then wevw =
w∗ and as a consequence we also have wmv = w∗. Writing the KKT conditions
satisfied by w∗ and wmv implies readily that 1 is an eigenvector of CDσΣ−1 =
CDσD−1

σ C−1D−1
σ = D−1

σ which leads to a contradiction if we consider assets that
have different volatilities.

The previous result also implies that Markowitz’s mean-variance portfolios are
not necessarily maximally ρ-presentative. To see this, consider a special case of the
example provided in the above proof, where correlations between different assets
are zero but volatilities are not necessarily identical. In this case, the long-only
minimum variance has weights that are proportional to the inverse of the squared
volatilities. As these weights are positive for all the assets, this is also the long-short
minimum variance portfolio as no long-only constraint is active. Now, if we assume
that expected returns of assets are equal, Markowitz’s mean-variance portfolios
all reduce to the long-only minimum variance portfolio, which is not maximally
ρ-presentative as was shown in the proof. The fact that mean-variance efficient
portfolios are not always maximally ρ-presentative can also be understood in the
context of Choueifaty et al. (2013) where it is shown that the MV and EW are not
leverage-invariant, as opposed to the ERC, EVW and MDP. More generally, the set
of maximally ρ-presentative portfolios is also leverage-invariant as we explain in the
introduction of Sec. 6.

5.2. On the impact of maximum weight constraints

In practice, asset managers may use maximum weight constraints when imposed by
regulators or when using objective functions that are too sensitive to the estimation
of their parameters (a common problem for long-short mean-variance portfolios). To

1950034-26

In
t. 

J.
 T

he
or

. A
pp

l. 
Fi

na
n.

 2
01

9.
22

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 9
4.

22
8.

18
7.

12
2 

on
 0

7/
09

/2
1.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



January 29, 2020 16:45 WSPC/S0219-0249 104-IJTAF SPI-J071
1950034

Portfolio Rho-presentativity

address this issue, robust covariance estimators are routinely used by asset managers
with some popular choices involving shrinkage methods (Ledoit & Wolf 2003) or
factor models (Campbell et al. 1997).

The use of maximum weight constraints and robust covariance estimators can
be closely related. Indeed, Proposition 1 in Jagannathan & Ma (2003) shows that,
for the MV portfolio, imposing nonnegative and maximum weight constraints is
equivalent to using a robust version of the original covariance matrix. This matrix is
robust in the sense that extreme covariances are most likely to be “shrunk” towards
more reasonable values. A limitation of the method is that the modified matrix
depends on Lagrange multipliers that are known only after the MV optimization or
determined through a numerically demanding maximization of a likelihood function
over a set of matrices [cf. Proposition 2 in Jagannathan & Ma (2003)].

Another route proposed in this paper is to identify a priori an essentially uncon-
strained optimization problem whose objective depends explicitly on the maximum
weight constraint, and is equivalent to the original constrained problem. This gives
as a result a clear understanding of the impact of the maximum weight constraint.
The constrained portfolios we consider here have a volatility-adjusted maximum
weight constraint, i.e. they belong to

Π+
σ,r :=

{
w ∈ Π+/∀ i ∈ {1, . . . , n}, wiσi

〈w, σ〉 ≤ 1
r

}
(5.13)

for some real r. In particular, portfolios with maximum weight constraint 1/r belong
to Π+

1,r.
We first present the unconstrained optimization problems that are equivalent to

the original constrained problems solved by the MDP and MV, respectively, and
conclude this subsection by discussing the implications of these two results.

5.2.1. An alternative definition of the constrained most diversified portfolio

We consider in this subsection an aggregation of the correlation spectrum that
generalizes those proposed in Propositions 5.1 and 5.2 for the EVW and the MDP.

Definition 5.6. For r ∈ {1, . . . , n}, the rank-r ρ-presentativity measure of w ∈
Rn\{0}, denoted by RMr(w), is the average of the r smallest correlations of w to
the assets. Considering the reordering (ρ(w))(i) ≤ (ρ(w))(i+1),

RMr(w) :=
1
r

r∑
i=1

(ρ(w))(i). (5.14)

Using the lingo of Sec. 4.1, RMr(w) = 〈ρ(w)↓, r−11r〉 where 1r is the vector whose
r first coordinates are equal to one and zero elsewhere. We could also consider
real-valued r ∈ [1, n] thanks to the identity 〈ρ(w)↓, r−11r〉 = minθ∈Π+

1,r
〈ρ(w), θ〉.

The average of the r smallest elements of a vector is concave, increasing and
symmetric. We show that the constrained MDP w∗

r , that maximizes DR over Π+
σ,r,
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is also the portfolio that maximizes RMr. This therefore implies that it is maximally
ρ-presentative and that it can be obtained by an unconstrained optimization of an
objective that incorporates the long-only and volatility-adjusted maximum weight
constraints.

Proposition 5.7. The constrained MDP w∗
r is maximally ρ-presentative as it is

the unlevered portfolio that maximizes the rank-r ρ-presentativity measure RMr over
nonzero long-short portfolios. Said otherwise,

argmax
w∈Π+

σ,r

DR(w) = argmax
w∈Π

RMr(w). (5.15)

In fact, for any ∀(y, wr) ∈ (Rn\{0})× Π+
σ,r,

RMr(y) ≤ RMr(w∗
r ) = DR(w∗

r )−1 ≤ DR(wr)
−1

. (5.16)

To prove this proposition we shall use properties of the constrained MDP that
relate both DR and RMr.

Proposition 5.8. w∗
r exists, is unique and DR(w∗

r )RMr(w∗
r ) = 1. In addition,

∀(y, wr) ∈ (Rn\{0}) × Π+
σ,r,

RMr(y) ≤ �(y, w∗
r)RMr(w∗

r ), (5.17)

DR(wr) ≤ �(wr, w
∗
r )DR(w∗

r ). (5.18)

Having this proposition at our disposal, we are ready to prove Proposition 5.7.

Proof of Proposition 5.7. The existence of w∗
r follows from Proposition 5.8.

Taking the supremum on both sides of (5.17) shows that w∗
r attains it so w∗

r is
maximally ρ-presentative, and all portfolios achieving the supremum are perfectly
correlated to it. By Proposition 1.1, the MDP is the unique unlevered portfolio that
maximizes RMr. The remaining results follow directly from Proposition 5.8.

Proof of Proposition 5.8. The function φ introduced before Proposition 2.5 is a
bijection from Π+

σ,r → Π+
1,r, and DR(w) = σC(φ(w))−1. Now as Π+

σ,r and Π+
1,r are

compact, and DR and σC are continuous on these sets, they reach their extrema and
one can write φ(argmaxΠ+

σ,r
DR) = argminΠ+

1,r
σC . Taking x∗ in the rightmost set,

by Proposition 2.5, we just need to establish 1
r

∑r
i=1(ρC(x∗))(i) = σC(x∗) to prove

the first claim. To do so, the idea is to find the average of the r smallest entries of
Cx∗ by applying the KKT theorem to minΠ+

1,r
σC , which, as C � 0, implies that

there exist λ � 0, μ � 0 such that x∗ ∈ Π+
1,r verifies the KKT conditions

Cx∗ = s1 + λ − μ, λ � x∗ = 0 and μ � (r−11− x∗) = 0. (5.19)

On the one hand, these conditions imply that σ2
C(x∗) = s − 〈μ, x∗〉 and 〈μ, x∗〉 =

r−1 〈1, μ〉, so s − r−1 〈1, μ〉 = σ2
C(x∗). On the other hand, the two last KKT
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conditions yield three mutually exclusive cases:⎧⎪⎪⎨
⎪⎪⎩

x∗
i = 0 ⇒ (λi ≥ 0 and μi = 0) ⇒ λi − μi ≥ 0 (Case 1),

0 < x∗
i < r−1 ⇒ (λi = 0 and μi = 0) ⇒ λi − μi = 0 (Case 2),

x∗
i = r−1 ⇒ (λi = 0 and μi ≥ 0) ⇒ λi − μi ≤ 0 (Case 3).

(5.20)

As x∗ ∈ Π+
1,r, #{x∗

i > 0} ≥ r, so the sum of the r smallest entries of λ − μ is
obtained through the summation of all the elements of −μ only (Cases 2 and 3).
Therefore,

σC(x∗)
r

r∑
i=1

(ρC(x∗))(i) =
1
r

r∑
i=1

(Cx∗)(i) (5.21)

=
1
r

r∑
i=1

(s1 + λ − μ)(i) (5.22)

= s +
1
r

r∑
i=1

(−μ)(i) (5.23)

= s − r−1 〈1, μ〉 (5.24)

= σ2
C(x∗), (5.25)

which proves that DR(w∗
r )RMr(w∗

r ) = 1. To finish, as C 
 0, uniqueness of w∗
r

comes from that of x∗.
Now let us turn to the proof of (5.17) and (5.18): by (3.4), for any two portfolios

(y, wr) ∈ (Rn\{0}) × Π+
σ,r,

�(y, wr)DR(wr)−1 = 〈φ(wr), ρ(y)〉 ≥ min
θ∈Π+

1,r

〈θ, ρ(y)〉 = RMr(y). (5.26)

Using RMr(w∗
r )DR(w∗

r ) = 1, the two inequalities follow if we take in turn wr = w∗
r

and then y = w∗
r .

On the practical side, this proposition provides the “duality gap” (5.16) which
makes it possible to assess the optimality of a long-only portfolio in terms of DR
without computing the MDP. Indeed for any wr ∈ Π+

σ,r,

0 ≤ DR(wr)−1 − DR(w∗
r )−1 ≤ DR(wr)−1 − RMr(wr), (5.27)

where on the right-hand side we do not use w∗
r . This can also be useful in an

algorithm as a stopping criterion.

Remark 5.9.

(i) We may conclude that w∗
r is maximally ρ-presentative by invoking Theorem 4.4

once the identity DR(w∗
r )RMr(w∗

r ) = 1 is established.
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(ii) For long-only portfolios neither of the two inequalities (5.17) and (5.18) is
superior to the other. Indeed, consider three assets with Σ = C, C1,2 = C1,3 =
0.7, C2,3 = 0.3 and r = 1. Then the sign of

DR(w)
DR(w∗

r )
− RMr(w)

RMr(w∗
r )

=
σ(w∗)
σ(w)

− min(ρ(w))
σ(w∗)

(5.28)

flips when picking w ∈ {e1, e2}. However (5.17) is more general as it holds for
long-short portfolios.

(iii) Moving to another topic, assuming that Σ is positive semi-definite is enough
to derive the KKT conditions in the proof of Proposition 5.8. Under this
weaker hypothesis, (5.15) can be established along the same lines as an iden-
tity between sets. The definiteness comes into play to prove that the MDP
is unique and that it is the unique portfolio that maximizes RMr by Propo-
sition 1.1. Dropping the definiteness of Σ, we still have that all portfolios in
the maximizing sets are perfectly correlated. One has to be careful and select
w ∈ Π\Ker(Σ) to avoid dividing by zero in the definition of ρ(w). From the
beginning, one could have actually balanced the definition of Π and the class
of matrices that are allowed by picking them in {Σ � 0/σΣ > 0 on Π}. This
remark is to be related with the concepts of long-only eigenvalue and long-
only condition number introduced in Sec. 6 that illustrates that in practice we
could consider merely semi-definite covariance matrices for problems involving
long-only constraints (see for instance Fig. 5).

5.2.2. An alternative definition of the constrained minimum variance

In this subsection, we state a generic result that yields Proposition 5.7 in the special
case Σ = C and that is obtained along the same lines.

Theorem 5.10. The minimization of a positive-definite quadratic form over the
simplex subject to a uniform maximum constraint can be expressed as an uncon-
strained optimization as follows:

min
w∈Π+

1,r

σ(w) = max
w∈Rn\{0}

1
r

r∑
i=1

(ρ(w) � σ)(i), (5.29)

where the maximum is attained by a unique unlevered portfolio that is the con-
strained MV wmv,r (the EW if r = n). In fact, for any (y, w) ∈ (Rn\{0})× Π+

1,r,

1
r

r∑
i=1

(ρ(y) � σ)(i) ≤ 1
r

r∑
i=1

(ρ(wmv,r) � σ)(i) = σ(wmv,r) ≤ σ(w). (5.30)

This gap can be used to assess the optimality of a portfolio without computing
the constrained MV.

Finally, the constrained MV wmv,r (the EW if r = n) is not necessarily maxi-
mally ρ-presentative.
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Proof. Conducting an analysis similar to the previous subsection, one obtains the
first two assertions. It remains to prove that the constrained MV is not necessarily
maximally ρ-presentative. The case r = 1 that corresponds to the unconstrained
MV was handled in the proof of Proposition 5.5. To be maximally ρ-presentative,
by Proposition 4.7, the constrained MV needs to be weakly ρ-presentative and to
satisfy the bound �(wmv,r, wevw) ≥ DR(wevw)/DR(w∗). Consider a situation where
all correlations are identical. Then wevw = w∗ hence wmv,r = wevw. Now, if r > 1,
then by sending the volatility of a single asset to zero, its weight in the EVW can
be made as close to one as one wishes. In this situation, the constrained MV whose
weights are bounded by 1/r is in general different from the EVW. Taking r = n

proves that EW is not maximally ρ-presentative.

This result shows that the constrained MV or the EW maximizes an aggregated
exposure, where individual exposures are given by ρ(w) � σ. These are usually
called marginal risk contributions [see Roncalli (2013)]. As such, using ρ(w) � σ as
an alternative measure of exposure would lead to a new framework, where these
portfolios would indeed be maximally exposed. Conducting an analysis similar to
the proof of Theorem 4.4, we can prove that the set of maximally exposed portfolios
given this measure of exposures is exactly

Rσ := {w ∈ Π+, σ(w)2 = 〈w↑, (Σw)↓〉}, (5.31)

which is small in the sense of Theorem 4.4 and for any w ∈ Rσ, �(w, wew) ≥
σ(w)/σ(wew). In a similar way, one can carry the results of Theorem 4.4 to the
set Rμ that is associated to a general-weighted measure ρ(w) � μ with μ 
 0. In
addition to our discussion before Example 4.9, this offers another alternative to the
celebrated approach of Markowitz and is left for further research.

5.2.3. Implications of these alternative definitions

The results obtained in Secs. 5.2.1 and 5.2.2 allow to identify a priori how the objec-
tives maximized by the MDP and MV are modified by the addition of maximum
weight constraints, that are volatility-adjusted for the MDP. Consider for example
the case of the MV portfolio in a universe of 500 assets. Theorem 5.10 shows that
minimizing the volatility of a long-only portfolio is equivalent to maximizing the
minimal marginal risk contribution of a long-short portfolio with weights summing
to one. Moreover, if a maximum weight constraint of 2% is added, the problem
becomes equivalent to the maximization of the average of the lowest 50 marginal
risk contributions of such a long-short portfolio.

A related result is provided in Proposition 1 in Jagannathan & Ma (2003),
whereby the problem of minimizing the volatility of a long-short portfolio whose
weights sum to one is studied. The authors show that adding minimum and maxi-
mum constraints to this problem is equivalent to solving the original problem using
a modified covariance matrix that is clearly identified. Nevertheless, its analytical
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form is a priori unknown as it depends on the Lagrange multipliers associated to the
added constraints. However, the authors provide an interpretation of this modified
matrix, and show that the adjustment brought to the original matrix “can reduce
sampling error”. In the remaining of Jagannathan & Ma (2003), an empirical study
is conducted that confirms these claims.

A connection between the results provided in Jagannathan & Ma (2003) and
both Proposition 5.7 and Theorem 5.10 can easily be made in a context where the
covariance matrix of the assets needs to be estimated. In this case, the correlation
spectrum ρ(w) and the marginal risk contributions ρ(w)�σ are subject to estimation
errors. Coming back to our MV example, this means that adding a 2% maximum
weight constraint is equivalent to maximizing an objective that now averages 50
estimated variables. This arguably can contribute to “reduce sampling error” which
can of course come at a cost and introduce a bias. Any further statistical analysis
is beyond the scope of this paper and is left for future research.

However, a first step toward such a statistical study is proposed in Sec. 6 where
we study the impact of deterministic variations of the covariances on the set of maxi-
mally ρ-presentative portfolios. This analysis gives another path to understand how
the introduction of long-only constraints may stabilize portfolios that also result
from an optimization of the spectrum — as is the case of the long-only minimum
variance portfolio. Indeed, we show that, for such problems, long-only constraints
are manifested by estimates on the discrepancy between portfolio sets that involve
the analog of “long-only condition numbers”. The latter are no greater than the
usual condition numbers and may remain finite for non-invertible covariance matri-
ces. This ensures that, even in such an unfavorable situation, optimized portfolios
may remain closely correlated for small variations of the covariances. This result
gives additional clues as to why the introduction of constraints may “reduce sam-
pling noise” as observed in Jagannathan & Ma (2003).

5.3. A unifying framework

So far we have shown that many well-known — possibly constrained — invest-
ment strategies maximize their overall exposure to the assets, as measured by some
real-valued f . This in fact provides a unifying framework, whereby all strategies
maximize an unconstrained objective that is a function of the spectrum ρ(w).

We summarize most of these results in Table 1. Given an investment strategy
that is indicated in the first column, the second column provides the primal objective
that is maximized by the corresponding portfolio, while the third column contains
its well-known dual definition. The use of the primal–dual terminology is justified
in Sec. 7.2. The following columns then indicate whether the considered portfolio
is always long-only, ρ-presentative or maximally ρ-presentative. Key remarks and
references are indicated in the last column.

We have also included in the table three portfolios that are obtained using
functions f that do not satisfy at least one of the three assumptions of Definition 4.1.
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Table 1. An alternative framework for constructing portfolios. We used the following abbreviations:
constr: constrained, eigv: eigenvector, LO: long-only, LS: long-short, ρ-pr: ρ-presentative and max
ρ-pr: maximally ρ-presentative. Let δΠ+ denote the function that vanishes on Π+ and that is +∞
elsewhere. Mean-var ρ (respectively, Min max ρ) was defined by Eq. (4.42) (respectively, Eq. (5.5))

Investment Primal approach: Dual approach: Remarks
strategy Portfolios maximize Weights max and
name f ◦ ρ(w) = proportional to LO ρ-pr ρ-pr References

EW 〈ρ(w) � σ, 1〉 1 × cf. Prop. 3.3
and Thm. 5.10

EVW 〈ρ(w), 1〉 1 	 σ × × cf. Props. 3.3
and 5.1

Generic LO 〈ρ(w), φ(θ)〉 θ ∈ Π+\{wevw} × f not symmetric,
cf. Sec. 4.3

ERC 〈ln(ρ(w)), 1〉 wi(Σw)i = σ2(w)
n

× × × cf. Props. 3.3

and 5.4
MV minρ(w) � σ argminΠ+ σΣ × × f not symmetric,

cf. Props. 3.3
and 5.5

MDP minρ(w) argmaxΠ+ DR × × × cf. Props. 3.3
and 5.2

Constr MV
Pr

i=1 (ρ(w) � σ)(i) argmin
Π+

1,r
σΣ × f not symmetric,

cf. Thm. 5.10
Constr MDP

Pr
i=1 (ρ(w))(i) argmax

Π+
σ,r

DR × × cf. Prop. 5.7

LS MDP −Var(ρ(w)) ±Σ−1σ × Long–short and
ρ-pr, cf. Prop. 7.3

Assets 〈ρ(w)p, 1〉, p > 2 any ei if Σ = I × f not concave,
several
maximizers

First eigv ‖ρ(w) � σ‖2 argmaxw
σ(w)
‖w‖2

f not concave,

of Σ first PCA
factor of Σ

Max ρ-pr θ 〈ρ(w)↓, φ(θ)↑〉 θ ∈ R × × cf. Thm. 4.4

Mean-var ρ E(ρ(w)) − λ
2

Var(ρ(w)) × × λ ∈ [0, 1), cf.

Section 4.3
w� −〈ρ(w), 1〉 − δΠ+ (w) × never max

ρ-pr, proof of
Prop. 4.8

Min max ρ −max ρ(w) − δΠ+ (w) × not unique,
Rmk. 5.3

The first such portfolio is the first eigenvector of the covariance matrix Σ. It is
obtained with f ◦ ρ(w) = ‖ρ(w) � σ‖. Indeed,

max
w∈Rn\{0}

‖ρ(w) � σ‖2 = max
w∈Rn\{0}

〈Σw, Σw〉
〈Σw, w〉 = max

w∈Rn\{0}
‖w‖2

〈Σ−1w, w〉 , (5.32)

which is solved by the eigenvector of Σ associated to its largest eigenvalue. If volatil-
ities are not identical, this function does not satisfy any of our assumptions and the
resulting portfolio maximizes an aggregation of its absolute exposures rather than
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its exposures. Second, we called “Assets” the portfolios reduced to single assets that
are obtained by maximizing f(x) =

∑n
i=1 xp

i when we specialize Σ = I and consider
p ∈ (2, +∞]. Indeed, for any such p and any x ∈ Rn\{0}, f(x) ≤ ‖x‖p

p ≤ ‖x‖p
2 with

equality between these terms occurring only at elements of the canonical basis. This
shows that multiple solutions may be obtained when using a function f that is not
concave. Finally, “generic LO” is a generic long-only portfolio that is different from
the EVW portfolio and is obtained with a function f that depends on the portfolio
weights and is thus not symmetric.

In Table 1, all primal objectives use basic functions of ρ(w) and we could also
think of using convex combinations of these objectives. This would allow to retrieve
all the intermediary portfolios in the spirit of Jurczenko et al. (2015) and Richard
& Roncalli (2015) using a single objective. Note that if we start with two basic
objectives that satisfy Definition 4.1, we can guarantee that the resulting compos-
ite objective will also satisfy Definition 4.1 and therefore produce a maximally ρ-
presentative portfolio. Using maximum weight constraints is an alternative approach
to build such intermediary portfolios as was illustrated in Fig. 4 where we depicted
a path connecting the EVW to the MDP. This path resides entirely in the set of
maximally ρ-presentative portfolios as proven in Proposition 5.7.

Finally, remark that the correlation of a portfolio to all the assets of its invest-
ment universe is easily computed and one does not need to know the weights. As
will be shown is Sec. 7.3, this allows us to assess whether a given fund is close to
realize an objective in terms of ρ(w) without knowing its holdings.

6. Stability of the Set of Maximally ρ-presentative Portfolios

We now turn to the stability of the set of maximally ρ-presentative portfolios, and
investigate how a change in the covariance matrix from Σ to Σ̃ (both being positive-
definite) may affect the associated sets RΣ and RΣ̃. In the sequel, let C, C̃ and σ,
σ̃ denote the relevant correlation matrices and volatilities.

Let us first note that the set of maximally ρ-presentative portfolios is leverage-
invariant in the sense that whenever only asset volatilities change, a simple rescaling
allows to retrieve the new maximally ρ-presentative portfolios [cf. also Choueifaty
et al. (2013) on the topic]. Indeed, any portfolio wΣ ∈ RΣ obtained via the
maximization of a function f that satisfies the assumptions of Definition 4.1, i.e.
wΣ = argmaxΠ+ f ◦ ρΣ, can be obtained in two steps. Since in Proposition 2.5 we
show that for any w ∈ Π+, ρΣ(w) = ρC(φσ(w)), the first step amounts to solving
for xC = argmaxΠ+ f ◦ρC that depends only on the correlation matrix. The second
step amounts to writing wΣ = φ−1

σ (xC) that depends only on the volatilities. As a
result, RΣ̃ = φ−1

σ̃ ◦ φσ(RΣ). However, if correlations change along with volatilities,
the answer is more involved and we dedicate the following proposition to it.

Proposition 6.1. Suppose that Σ, Σ̃ are two symmetric and positive-definite
matrices, that C, C̃ and σ, σ̃ are their respective correlation matrices and vectors
of volatilities and that RΣ, RΣ̃ denote the associated maximally ρ-presentative sets.
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Then, the following statements hold.

(i) The volume of the symmetric difference between RΣ and RΣ̃ tends to zero
along with the distance between the matrices, i.e.

lim
Σ̃→Σ

λn−1(RΣ ΔRΣ̃) = 0, (6.1)

where the symmetric difference Δ is taken in Π+ and λn−1 denotes the (n−1)-
dimensional Lebesgue measure.

(ii) Considering the Euclidean distance between portfolios of Π+, we can control
the induced Hausdorff distance dH between RΣ and RΣ̃ as a function of the
distance between the matrices Σ and Σ̃. More precisely, the mapping Σ �→ RΣ

satisfies the local Hölder condition

dH(RΣ,RΣ̃) ≤ cσ,σ̃‖σ − σ̃‖ + cΣ,Σ̃‖C − C̃‖
1
2 , (6.2)

with

cσ,σ̃ ≤ nξ(1 +
√

nξ)/ min(min(σ), min(σ̃)), (6.3)

cΣ,Σ̃ ≤ (ξ +
√

nξ2)(
√

n + n)n
1
4

2
√

2√
μM

(
μM

μm

) 3
4

, (6.4)

where we denoted μm (respectively, μM ) as the smallest (respectively, largest)
of the eigenvalues of C and C̃ and ξ := max(max(σ)/ min(σ), max(σ̃)/ min(σ̃))
that can be thought of as the volatility dispersion.

(iii) When volatilities are fixed (i.e. σ = σ̃), we have

dH(RC ,RC̃) ≤ 2
√

2n√
μM

(
μM

μm

) 3
4

‖C − C̃‖
1
2 . (6.5)

Equipping Π+ with the distance d�C (x, y) :=
√

2(1 − �C(x, y)), the induced
Hausdorff distance d̃H satisfies

dH̃(RC ,RC̃) ≤ 2
√

2√
μM

(
μM

μ+
m

) 3
4

‖C − C̃‖
1
2 , (6.6)

where we introduce

μ+
min(C) := min

‖x‖=1
x�0

〈Cx, x〉, (6.7)

the smallest “long-only eigenvalue” of C and define μ+
m := min(μ+

min(C),
μ+

min(C̃)).
To be more specific, for any x ∈ RC ,

min
x̃∈RC̃

‖x − x̃‖2 ≤ 2
(
‖C− 1

2 ‖ + ‖C− 1
2 1‖

)2

×
(
1 + DR(C) + 2‖C̃ 1

2 ‖DR(C)
)
‖C − C̃‖, (6.8)
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min
x̃∈RC̃

σC(x − x̃)2 ≤ 2
(
1 + ‖C− 1

2 1‖2
)

× (1 + DR(C))
(
1 + ‖C̃ 1

2 ‖DR(C)
)
‖C − C̃‖, (6.9)

min
x̃∈RC̃

(1 − �C(x, x̃)) ≤ 2
μ+

min(C)

(
1 +

μmax(C̃)
1
2

μ+
min(C̃)

1
2 + μ+

min(C)
1
2

)
‖C − C̃‖,

(6.10)

where, abusing notations, we define DR(C) := maxΠ+ DRC to be the maximum
DR reached by a long-only portfolio formed over the universe of assets whose
correlation is C. Note that one always has μmax(C̃)

1
2 = ‖C̃ 1

2 ‖ ≤ √
n, which

allows to eliminate C̃ in the local constants of the previous inequalities.

Proof of (i). As in the proof of Theorem 4.4, let Δp := {w ∈ Π+/p ◦ φσ(w) =
φσ(w)↑, p ◦ ρ(w) = ρ(w)↓} and let Δ̃p be its counterpart associated to Σ̃ and recall
that RΣ =

⋃
p∈Sn

Δp and RΣ̃ =
⋃

p∈Sn
Δ̃p. Then we have

λn−1(RΣ ΔRΣ̃) = λn−1[(RΣ ∩ (Π+\RΣ̃)) ∪ (RΣ̃ ∩ (Π+\RΣ))] (6.11)

= λn−1[RΣ ∩ (Π+\RΣ̃)] + λn−1[RΣ̃ ∩ (Π+\RΣ)] (6.12)

= λn−1

⎡
⎣ ⋃

p∈Sn

⎛
⎝Δp ∩

⎛
⎝ ⋂

q∈Sn

Π+\Δ̃q

⎞
⎠
⎞
⎠
⎤
⎦ (6.13)

+ λn−1

⎡
⎣ ⋃

p∈Sn

⎛
⎝Δ̃p ∩

⎛
⎝ ⋂

q∈Sn

Π+\Δq

⎞
⎠
⎞
⎠
⎤
⎦ (6.14)

≤
∑

p∈Sn

[λn−1(Δp ∩ (Π+\Δ̃p)) + λn−1(Δ̃p ∩ (Π+\Δp))]. (6.15)

For fixed p ∈ Sn, we focus on the term λn−1

(
Δp ∩ (Π+\Δ̃p)

)
as all the other terms

can be treated in a similar way and observe that it is equal to

λn−1({w ∈ Π+/p(σ � w) = (σ � w)↑, p((Σw) 	 σ) = ((Σw) 	 σ)↓} (6.16)

\{w ∈ Π+/p(σ̃ � w) = (σ̃ � w)↑, p((Σ̃w) 	 σ̃) = ((Σ̃w) 	 σ̃)↓}) (6.17)

≤ λn−1({w ∈ Π+/p(σ � w) = (σ � w)↑} (6.18)

\{w ∈ Π+/p(σ̃ � w) = (σ̃ � w)↑}) (6.19)

+ λn−1({w ∈ Π+/p(σ � Σw) = (σ � Σw)↓} (6.20)

\{w ∈ Π+/p(σ̃ � Σ̃w) = (σ̃ � Σ̃w)↓}), (6.21)

where the two terms are of the form λn−1((Π+ ∩ Lδp)\(Π+ ∩ L̃δp)) with δp :=
{p(w) = w↑} [or δp := {p(w) = w↓}] and with L, L̃ being two linear mappings.
It remains to prove that these two terms converge to zero. For that it suffices to
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invoke the dominated convergence theorem since the characteristic functions of the
different arguments converge pointwise to zero λn−1-a.e.

Proof of (ii). Step 1. Our aim is to estimate the distance between two portfolios
w ∈ RΣ and w̃ ∈ RΣ̃ in terms of the distance between the positive-definite and
symmetric matrices Σ and Σ̃. Let us first observe that

∀w, w̃ ∈ Π+, ‖φσ(w) − φσ̃(w̃)‖ ≤ ‖φσ(w) − φσ̃(w)‖ + ‖φσ̃(w) − φσ̃(w̃)‖, (6.22)

where we can bound the first term as follows:

‖φσ(w) − φσ̃(w)‖ ≤ ‖w‖‖σ − σ̃‖
〈w, σ〉 + ‖w � σ̃‖

∣∣∣∣ 1
〈w, σ〉 −

1
〈w, σ̃〉

∣∣∣∣ (6.23)

≤ 1
〈w, σ〉

[
‖w‖‖σ − σ̃‖ + ‖w‖‖σ̃‖‖w‖‖σ − σ̃‖

〈w, σ̃〉
]

(6.24)

≤ [min(σ)]−1 (1 + ‖σ̃‖[min(σ̃)]−1
) ‖σ − σ̃‖, (6.25)

since ∀w ∈ Π, ‖w� σ‖ ≤ ‖w � σ‖1 = 〈|w|, σ〉 ≤ ‖w‖‖σ‖ ≤ ‖w‖1‖σ‖ = ‖σ‖. For the
second term, one has

‖φσ̃(w) − φσ̃(w̃)‖ ≤ ‖σ̃‖‖w〈w̃, σ̃〉 − w̃〈w, σ̃〉‖
〈w, σ̃〉〈w̃, σ̃〉 (6.26)

≤ ‖σ̃‖‖w − w̃‖〈w̃, σ̃〉 + ‖w̃‖|〈w − w̃, σ̃〉|
〈w, σ̃〉〈w̃, σ̃〉 (6.27)

≤ [min(σ̃)]−1(1 + ‖σ̃‖[min(σ̃)]−1)‖σ̃‖‖w − w̃‖. (6.28)

Therefore, we can express the Euclidean distance between w and w̃ in terms of that
between x and x̃ since

‖w − w̃‖ = ‖φσ−1(x) − φσ̃−1 (x̃)‖ (6.29)

≤ (1 + max(σ̃)‖σ̃−1‖) (6.30)

× (max(σ)‖σ−1‖‖σ̃−1‖‖σ − σ̃‖ + max(σ̃)‖σ̃−1‖‖x− x̃‖). (6.31)

This allows us to assume that σ = σ̃ = 1 in the sequel and continue working only
with correlations.

Step 2. To be able to estimate the distance in Π+ between RC and RC̃ , we are first
going to relate the Euclidean distance ‖x− x̃‖ to �C(x, x̃) for any x, x̃ ∈ Π1 := {x ∈
Rn/〈x,1〉 = 1}. We recall that in Proposition 2.2 we exhibited a bijection between
Π and E . In a similar way, we can recover any x ∈ Π1 from its spectrum since
we have x = C−1(σC(x)ρC(x)) with σC(x)−1 = 〈C−11, ρC(x)〉. The first identity
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implies that

‖x − x̃‖ ≤ ‖C− 1
2 ‖σC(x)‖ρC(x) − ρC(x̃)‖C−1 + |σC(x) − σC(x̃)|σC(x̃)−1‖x̃‖,

(6.32)

whereas the second one implies

|σC(x) − σC(x̃)|
σC(x)σC(x̃)

= |σC(x)−1 − σC(x̃)−1| (6.33)

= |〈C− 1
2 1, C− 1

2 (ρC(x) − ρC(x̃))〉| (6.34)

≤ ‖C− 1
2 1‖‖ρC(x) − ρC(x̃)‖C−1 , (6.35)

which can be combined with

‖ρC(x) − ρC(x̃)‖2
C−1 = 2(1 − 〈ρC(x), ρC(x̃)〉C−1) = 2(1 − �C(x, x̃)). (6.36)

All in all, given that x ∈ Π+ and x̃ ∈ Π+ play symmetric roles,

‖x − x̃‖2 ≤ min(σC(x)2, σC(x̃)2)
(
‖C− 1

2 ‖ + ‖C− 1
2 1‖

)2 (
2(1 − �C(x, x̃))

)
(6.37)

where we used the fact that ‖x‖ ≤ 1 and ‖x̃‖ ≤ 1. Similarly, the squared tracking
error in terms of C can be dominated since

σC(x − x̃)2 = (σC(x) − σC(x̃))2 + 2(1 − �C(x, x̃))σC(x)σC(x̃) (6.38)

≤ (‖C− 1
2 1‖2σC(x)σC (x̃) + 1)σC(x)σC (x̃)(2(1 − �C(x, x̃))). (6.39)

We are ready to express the distance between RC and RC̃ as a function of the
distance between the matrices.

Step 3. Here the main idea is to use the surjective mapping x ∈ Π+ �→ zx :=
argmax fx ◦ρC̃ = argmaxz∈Π〈x↑, ρC̃(z)↓〉 ∈ RC̃ , that we introduced in Theorem 4.4
and which can be thought of as the “projection” of x ∈ RC on RC̃ . Let x ∈ RC ,
then

σC(x)�C(x, zx) = 〈x, ρC(zx)〉 (6.40)

≥ 〈x↑, ρC(zx)↓〉 (6.41)

= 〈x↑, ρC̃(zx)↓〉 + 〈x↑, ρC(zx)↓ − ρC̃(zx)↓〉 (6.42)

≥ 〈x↑, ρC̃(x)↓〉 + 〈x↑, ρC(zx)↓ − ρC̃(zx)↓〉 (6.43)

= 〈x↑, ρC(x)↓〉 + 〈x↑, ρC(zx)↓ − ρC̃(zx)↓〉 + 〈x↑, ρC̃(x)↓ − ρC(x)↓〉
(6.44)

≥ σC(x) − (‖ρC(x)↓ − ρC̃(x)↓‖ + ‖ρC(zx)↓ − ρC̃(zx)↓‖)‖x‖,
(6.45)

where we used the fact that, ∀y ∈ Π, 〈x↑, ρC̃(zx)↓〉 ≥ 〈x↑, ρC̃(y)↓〉, that 〈x↑,
ρC(x)↓〉 = 〈x, ρC(x)〉 = σC(x) by Theorem 4.4 and the Cauchy–Schwarz inequality
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and the fact that ‖x↑‖ = ‖x‖. Finally, since for any u, v ∈ Rn, ‖u↓ − v↓‖ ≤ ‖u− v‖,
1 − �C(x, zx) ≤ σC(x)−1‖x‖(‖ρC(x) − ρC̃(x)‖ + ‖ρC(zx) − ρC̃(zx)‖). (6.46)

Given that for any x ∈ Π+, ‖x‖ ≤ 1 then for any x ∈ RC ,

‖x − zx‖2 ≤ 2 min
(

σC(x),
σC(zx)2

σC(x)

)(
‖C− 1

2 ‖ + ‖C− 1
2 1‖

)2

(6.47)

× (‖ρC(x) − ρC̃(x)‖ + ‖ρC(zx) − ρC̃(zx)‖). (6.48)

It remains to express the distance between the spectra as a function of the distance
between the matrices.

Step 4. For any x ∈ Π+, we have

‖ρC(x) − ρC̃(x)‖ ≤ ‖σ−1
C (x)Cx − σ−1

C (x)C̃x‖ + ‖σ−1
C (x)C̃x − σ−1

C̃
(x)C̃x‖ (6.49)

≤ σ−1
C (x)‖C − C̃‖‖x‖ + |σ−1

C (x) − σ−1

C̃
(x)|‖C̃x‖, (6.50)

where the second term can also be dominated by ‖C − C̃‖ since

|σ−1
C (x) − σ−1

C̃
(x)|‖C̃x‖ ≤ σ−1

C (x)σ−1

C̃
(x)

|σ2
C(x) − σ2

C̃
(x)|

σC(x) + σC̃(x)
‖C̃ 1

2 ‖‖C̃ 1
2 x‖ (6.51)

= σ−1
C (x)

|〈(C − C̃)(x), x〉|
σC(x) + σC̃(x)

‖C̃ 1
2 ‖ (6.52)

≤ σ−1
C (x)‖C − C̃‖‖C̃ 1

2 ‖‖x‖2(σC̃(x) + σC(x))−1. (6.53)

Then for any x ∈ RC ,

‖x − zx‖2
(
‖C− 1

2 ‖ + ‖C− 1
2 1‖

)−2

(6.54)

≤ 2
(

σC(x)‖ρC(x) − ρC̃(x)‖ +
σC(zx)2

σC(x)
‖ρC(zx) − ρC̃(zx)‖

)
(6.55)

≤ 2‖C − C̃‖
((

1 + ‖C̃ 1
2 ‖(σC̃(x) + σC(x))−1

)
(6.56)

+
σC(zx)
σC(x)

(
1 + ‖C̃ 1

2 ‖(σC̃(zx) + σC(zx))−1
))

(6.57)

≤ 2‖C − C̃‖
(
1 + ‖C̃ 1

2 ‖σ−1
C (x) + σ−1

C (x)
(
1 + ‖C̃ 1

2 ‖
))

, (6.58)

which implies that for any x ∈ RC ,

d(x,RC̃)2 ≤ 2(‖C− 1
2 ‖ + ‖C− 1

2 1‖)2
(
1 + DR(C) + 2‖C̃ 1

2 ‖DR(C)
)
‖C − C̃‖ (6.59)

≤ 4(‖C− 1
2 ‖ + ‖C− 1

2 1‖)2DR(C)(1 + ‖C̃ 1
2 ‖)‖C − C̃‖. (6.60)
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In a similar way, for any x ∈ RC one has

σC(x − zx)2

2‖C − C̃‖ ≤ (‖C− 1
2 1‖2σC(x)σC(zx) + 1) (6.61)

×
(

σC(zx)
σC(x)

(
1 +

‖C̃ 1
2 ‖

σC̃(x) + σC(x)

)
+ 1 +

‖C̃ 1
2 ‖

σC̃(zx) + σC(zx)

)
,

(6.62)

which implies

min
x̃∈RC̃

σC(x − x̃)2 ≤ 2(1 + ‖C− 1
2 1‖2)(1 + DR(C))(1 + ‖C̃ 1

2 ‖DR(C))‖C − C̃‖.
(6.63)

Similarly, for any x ∈ RC ,

1 − �C(x, zx) ≤ ‖x‖
σC(x)

(
‖x‖

σC(x)

(
1 +

‖C̃ 1
2 ‖‖x‖

σC̃(x) + σC(x)

)
(6.64)

+
‖zx‖

σC(zx)

(
1 +

‖C̃ 1
2 ‖‖zx‖

σC̃(zx) + σC(zx)

))
‖C − C̃‖, (6.65)

and thus,

min
x̃∈RC̃

(1 − �C(x, x̃)) ≤
2
(
1 + μmax(C̃)

1
2 (μ+

min(C̃)
1
2 + μ+

min(C)
1
2 )

−1
)

μ+
min(C)

‖C − C̃‖.

(6.66)

Step 5. Putting everything together, for any w ∈ RΣ,

d(w,RΣ̃) ≤ (1 + max(σ̃)‖σ̃−1‖)
(

max(σ)‖σ−1‖‖σ̃−1‖‖σ − σ̃‖ (6.67)

+ 2 max(σ̃)‖σ̃−1‖(‖C− 1
2 ‖+‖C− 1

2 1‖)
(
DR(C)(1+‖C̃ 1

2 ‖)
) 1

2 ‖C − C̃‖
1
2
)
.

(6.68)

Therefore, the Hausdorff distance satisfies

dH(RΣ,RΣ̃) = max
(

max
w∈RΣ

d(w,RΣ̃), max
w̃∈RΣ̃

d(w̃,RΣ)
)

(6.69)

≤ max(c1(σ, σ̃), c1(σ̃, σ))‖σ − σ̃‖ + max(c2(Σ, Σ̃), c2(Σ̃, Σ))‖C − C̃‖
1
2 ,

(6.70)

where

c1(σ, σ̃) := max(σ)‖σ−1‖(1 + max(σ̃)‖σ̃−1‖)‖σ̃−1‖, (6.71)

c2(Σ, Σ̃) := 2(1 + max(σ̃)‖σ̃−1‖)max(σ̃)‖σ̃−1‖(‖C− 1
2 ‖ + DRC(C−11)) (6.72)

× (DR(C)(1 + ‖C̃ 1
2 ‖)) 1

2 . (6.73)
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Then, given that we have (4.36) and that DRC(C−11) = 〈C−11,1〉 1
2 ≥ 0, then

DR(C) ≤ DRC(C−11) = 〈C−11,1〉 1
2 ≤ √

n/μm and we obtain the announced
bounds. In the same way, (6.60) [respectively, (6.66)] implies the bound we
announced on dH(RC ,RC̃) [respectively, d̃H(RC ,RC̃)].

The previous proposition allows us to characterize the stability of the set of maxi-
mally ρ-presentative portfolios, which we comment on further. As per our discussion
before the proposition, we may assume that asset volatilities are fixed. Suppose now
that we are given a correlation matrix C. We show that for any matrix C̃ that con-
verges to C, the distance between their associated maximally ρ-presentative sets
converges to zero along with the volume of their symmetric difference.

Beyond the volume of the difference between maximally ρ-presentative sets, the
notions of proximity between portfolios we considered are: the Euclidean distance
between their weights, their tracking error and their correlation. It is shown fur-
thermore that given any two matrices C and C̃, the constants exhibited in the
proposition allow to control how far from each other their associated maximally ρ-
presentative sets will be for these latter three measures. In particular, if we choose
any compact neighborhood K that contains C, there will be constants associated
to K, such that any matrix C̃ belonging to K that converges to C does so at a rate
that is bounded by a fixed constant that does not depend on C̃.

However, the constants that control the convergence rates are of a differ-
ent nature. While the Hausdorff distance associated to the Euclidean distance is
essentially controlled by the analog of a condition number μM/μm, the Hausdorff
distance induced by the correlation distance d� : (x, y) �→ √

2(1 − �(x, y)) is con-
trolled by its long-only version μM/μ+

m which is the analog of the long-only condi-
tion number μmax/μ+

min. The latter involves the smallest eigenvalue of a matrix
over the positive orthant and improves over the usual condition number since
μmin ≤ μ+

min.
To illustrate the importance of a long-only condition number in practice, we

consider a situation where the number of assets n increases and we compare the
stability of the usual condition number with that of its long-only counterpart. For
this purpose, we perform a numerical experiment where we consider the daily time
series for 587 stocks of the MSCI USA (having discarded those that did not trade
at least 90% of the days over March 2016–March 2017). We sort them by decreasing
capitalization and form successively 587 universes with increasing n. For each one
of these universes, we compute the condition number of the sample correlation
matrix C and the inverse of DR(C) that results from a quadratic optimization.
Since n−1μmin(C) ≤ DR(C)−2 ≤ μ+

min(C), we then obtain an upper bound for
the long-only condition number. The left inequality was proven in the end of the
previous proof. Let us now prove the rightmost inequality:

DR(C)−1 = min
x∈Π+

σC(x) = min
x�0
x =0

〈Cx, x〉 1
2

‖x‖1

≤ min
x�0
x =0

〈Cx, x〉 1
2

‖x‖2

=
√

μ+
min(C). (6.74)
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Fig. 5. Usual condition number versus long-only condition number for an increasing number of
assets n. The upper bound on the long-only condition number indicates that it remains finite even
if n is larger than the sample size.

We plot both condition numbers as a function of n in Fig. 5, which shows that, as
opposed to the usual condition number, the long-only condition number remains
finite even for a number of assets that is larger than the sample size. This is consis-
tent with the fact that some long-only portfolio construction processes may remain
stable in terms of d� even for problems involving ill-conditioned covariance matrices.

We will leave for future research the improvement of the bounds provided in
Proposition 6.1, let alone the proof that they are optimal. For practical use, such
bounds could also be significantly improved by considering a set of correlation matri-
ces that reflect typical financial markets structures (e.g. with a dominant eigenvalue
and associated “market” eigenvector). Finally, we note that even if we considered
distances between sets of portfolios, the stability results we obtained could be trans-
posed to some of the long-only portfolios we study in Sec. 5.1, with the concept of
“long-only” eigenvalue and condition number playing a central role.

Remark 6.2.

(i) Let d(A, B) := λn−1(AΔ B), the pseudometric that we consider in the pre-
vious proposition. In Groemer (2000), the author proves that for two convex
bodies A, B ⊂ Rn one may write d(A, B) ≤ cA,BdH(A, B) and dH(A, B) ≤
CA,Bd(A, B) where cA,B and CA,B depend on A, B and n.

However, in our problem this result cannot be used directly as the set of
maximally ρ-presentative portfolios is not necessarily convex. We could however
rely on it and argue as in the proof of statement (i) of the proposition to show
that limΣ̃→Σ, dH(RΣ,RΣ̃) = 0. This is a result that we obtain in an alternative
way since it is implied by the local Hölder condition.

Furthermore, to get such a regularity property using the approach used in
the proof of statement (i) of the previous proposition, we could have relied
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on the results of Schymura (2014) where the author gives an upper bound
to the volume of the symmetric difference of a bounded set A ⊂ Rn and a
perturbation g(A). This bound involves the length of the boundary of A as
measured by the Hausdorff measure. Unfortunately, the result was established
only for a transform g that is a composition of a translation and a rotation
and the paper does not consider the action of a positive-definite linear operator
such as Σ.

(ii) Combining (6.35), (6.36) and Proposition 2.5 we obtain

∀w, w̃ ∈ Π+, |DR(w) − DR(w̃)| ≤ DR(w̄)d�(w, w̃). (6.75)

This inequality shows that two portfolios that are increasingly correlated to each
other will have a Diversification Ratio that is increasingly similar. Conversely,
this inequality may also be useful to obtain upper bounds on the potential
correlation of portfolios that are far apart using their Diversification Ratios
only.

7. Applications

7.1. The Core Properties of the constrained MDP

This section is dedicated to a theoretical application of Proposition 5.7 that also uses
some elements of the proof of Proposition 5.8. We state two equivalent definitions
of the constrained MDP — as defined in Sec. 5.2 — that extend to the constrained
case the First and Second Core Properties of Choueifaty et al. (2013).

Proposition 7.1 (First Core Property). The MDP w∗
r with volatility-adjusted

maximum weight 1/r satisfies the following properties:

(i) The correlation of the portfolio to any asset that is held is smaller or equal to
the correlation between the portfolio and any asset that is not held.

(ii) The correlation of the portfolio to any asset that saturates the max constraint
is smaller or equal to the correlation between the portfolio and any asset that
does not saturate the constraint.

(iii) The correlation of the portfolio to any asset that is held and does not saturate
the max constraint is constant.

Conversely, any portfolio in Π+
σ,r that satisfies (i), (ii) and (iii) is necessarily the

constrained MDP w∗
r .

Proof. Statement (i) reads (w∗
r )i = 0 and (w∗

r )j > 0 =⇒ (ρ(w∗
r ))i ≥ (ρ(w∗

r ))j . It
is enough to prove the results for x∗ = φ−1(w∗

r ). Employing the KKT theorem as in
the proof of Proposition 5.8 and using the same notations, (Cx∗)i = s+(λi −μi) ≥
s ≥ s + (λj − μj) = (Cx∗)j . In a similar way, we get (ii). Claim (iii) follows readily
from (Case 2) in the same proof, i.e. λj = μj = λi = μi = 0, hence (Cx∗)i = (Cx∗)j .
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Conversely, assume that w = φ(x) satisfies all claims. This implies that

0 = xi < xj ≤ xk = r−1 =⇒ (Cx)i ≥ (Cx)j ≥ (Cx)k. (7.1)

If m is the number of saturated stocks, m ≤ r since 〈x,1〉 = 1. Let I (respectively,
J) be the set of indices of the stocks that saturate (respectively, do not saturate)
the constraint, then

σC(x)2 =
∑
i∈I

(Cx)ixi +
∑
j∈J

(Cx)jxj =
1
r

m∑
i=1

(Cx)(i) +
∑
j∈J

(Cx)jxj (7.2)

by (i) and (ii). Now given that by (iii), ∃ν ∈ R/∀j ∈ J, (Cx)j = ν, it follows

σC(x)2 − 1
r

m∑
i=1

(Cx)(i) = ν
∑
j∈J

xj = ν

(
1 −

∑
i∈I

xi

)
= ν

(
1 − m

r

)
, (7.3)

where in the two last identities we used the fact that 〈x,1〉 = 1 and the definition
of I. However,

1
r

r∑
i=1

(Cx)(i) =
1
r

m∑
i=1

(Cx)(i) +
1
r

r∑
j=m+1

(Cx)(j) =
1
r

m∑
i=1

(Cx)(i) +
ν

r
(r − m) (7.4)

by (ii) and (iii). Thus, 1
r

∑r
i=1(Cx)(i) = σC(x)2 which concludes the proof by

Proposition 5.7.

Proposition 7.2 (Second Core Property). The following statements are
equivalent:

(i) w∗
r is the MDP with volatility-adjusted maximum weight constraint 1/r,

(ii) w∗
r ∈ Π+

σ,r is such that for any wr ∈ Π+
σ,r, DR(wr) ≤ �(wr, w

∗
r )DR(w∗

r ).

Proof. (ii) =⇒ (i) as ∀wr ∈ Π+
σ,r, DR(wr) ≤ �(wr, w

∗
r )DR(w∗

r ) ≤ DR(w∗
r ), i.e. w∗

r

has the highest DR that can be achieved over the set of constraints Π+
σ,r. (i) =⇒ (ii)

is simply the inequality (5.18).

7.2. A not-so-typical saddle-point problem

In Proposition 5.2, we introduced the problem

max
w∈Rn\{0}

min
θ∈Π+

�(w, θ),

which may remind us of a minimax matrix game problem or saddle-point problem
but it is different in nature as (w, θ) �→ �(w, θ) is not (even quasi) concave–convex.
Let us pick an example with three assets with covariance

Σ =

⎛
⎜⎜⎝

1.0 −0.3 −0.4

−0.3 1.0 −0.5

−0.4 −0.5 1.0

⎞
⎟⎟⎠. (7.5)

In this case, the MDP and MV are both equal to w∗ ≈ (0.31, 0.32, 0.36). This
example is an opportunity to show the differences between the objective functions
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Fig. 6. As indicated by the level lines, the MV/MDP depicted by a star minimizes w �→ σ(w)
while maximizing both the nonsmooth w �→ min ρ(w) and w �→ minθ∈Π+ �(w, θ) as proven in
Proposition 5.2. The nonconvex superlevels indicate that the latter functions are not quasi-concave.
From the two charts in the middle, it is clear that there are w ∈ Π+ with minθ∈Π+ �(w, θ) <

min ρ(w). By Lemma 3.4, these portfolios are such that ρ(w) � 0. To the right, we plot at the
top the graph of w �→ σ(w) and below the graphs of w �→ min(ρ(w)) and w �→ minθ∈Π+ �(w, θ)
which are not smooth. We can observe that these three graphs intersect at a single point that is
the MV/MDP.

of Proposition 5.2 where we proved

max
w∈Rn\{0}

min ρ(w) = max
w∈Rn\{0}

min
θ∈Π+

�(w, θ) = min
w∈Π+

σ(w). (7.6)

These identities may remind us a primal–dual framework with the primal and dual
problems on both ends.

One can argue as in the proof of Proposition 5.4 to reduce the search set to
those long-short w that sum to one. Therefore, to illustrate these problems, we
depict in Fig. 6 the level lines of the objective functions (x, y) �→ σ(x, y, 1 − x − y)
and (x, y) �→ min ρ(x, y, 1 − x − y). As they are significantly different we also draw
the level lines of (x, y) �→ minθ∈Π+ �((x, y, 1− x− y), θ). This latter chart allows us
to better understand the second identity of (5.2) in Proposition 5.2 which is implied
by Lemma 3.4 and to shed some light on the remark that follows this lemma (see the
caption of Fig. 6 for the details). To further illustrate the duality suggested by the
inequalities (5.16) we depict the graphs of the three functions we just mentioned.

7.3. Realized max ρ-presentativity and realized diversification

Let us recall that Proposition 4.5 asserts that any maximally ρ-presentative w

satisfies the necessary condition

DR(w) ≥ DR(wevw)/�(w, wevw). (7.7)

In this subsection, we show how this bound could be used to identify funds that qual-
ify for being maximally ρ-presentative without knowing their composition. Indeed,
assuming that a fund is constantly rebalanced to maintain w, �(w, wevw) can be
measured by simply computing the correlation between the time series of w and
that of wevw. The latter is computed thanks to the series of the assets of the uni-
verse. Similarly, using time series only, the realized DR of a portfolio with unknown
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composition can be also measured thanks to the following result already proved
in (4.36).

Proposition 7.3. Let w̄ := Σ−1σ/‖Σ−1σ‖1 be the portfolio that maximizes DR
over Π, then for any w ∈ Π,

DR(w) = DR(w̄)�(w̄, w). (7.8)

Thus the long-only MDP is the portfolio that is most correlated to the long-
short MDP amongst all long-only portfolios. In this sense, the long-only MDP is
the projection of the long-short MDP over long-only portfolios. Note that, using
this identity, one can reformulate (5.18) in a way that may remind us a triangle
inequality:

∀wr ∈ Π+
σ,r, �(wr, w̄) ≤ �(wr, w

∗
r )�(w∗

r , w̄). (7.9)

Here, we used �(w∗
r , w̄) ≥ 0 which follows from Proposition 7.3.

Let us get back to our idea, and perform a numerical experiment where we
consider daily time series for 464 stocks of the MSCI USA (having discarded those
that did not trade at least 90% of the days over January 2013–March 2017). Using
the Bloomberg Fund Screening module, we similarly considered daily time series
for the funds that satisfy the following:

Market Status: Active; Fund Strategy: Blend;

Fund Asset Class Focus: Equity; Fund Primary Share Class: Yes;

Fund Geographical Focus: International; First Date: <= 1/1/2013;

Currency: USD; Fund Total Assets (mil): >100M.

Fund Pricing Frequency: Daily;

We discarded 71 funds that had obvious price synchronization issues, ending up with
2278 funds for a total of $7500 billion, i.e. about 80% of the total net assets invested
in equity funds in the USA in Q1/2016 (according to the International Investment
Funds Association report of June 28, 2016). Note that the computation of DR(w)
involves the inversion of the sample covariance Σ which is possible with probability
1 since we have circa 1300 daily returns for each one of the 464 stocks. In Fig. 7,
we depict the realized DR(w) of these funds as a function of DR(wevw)/�(w, wevw)
and indicate the identity function using a dashed line. A live fund depicted by a
red star satisfies the necessary condition as it lies above the dashed line, as do
the forward-looking constrained MDPs that are indeed maximally ρ-presentative
by Proposition 5.7.

On a different topic, the fact that some funds have a DR that is less than one
may indicate that they are not long-only or composed of assets that are outside of
the considered universe. Indeed, as we do not have access to their compositions, we
cannot guarantee that they are invested solely in the MSCI USA selection.

Finally, we refer to Appendix A.2 for some additional illustrations of the theo-
retical results of this paper that are based on this dataset of funds.
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Fig. 7. Realized DR and DR(wevw)/�(wevw , ·) in the USA from January 2013 to March 2017 for
2278 funds representing 80% of the total net assets invested in equity funds in the USA in Q1/2016.
The fund depicted with a blue star is a theoretical and forward-looking EVW portfolio. The green
curve depicts all the forward-looking constrained MDPs. The green curve and the dashed line —
that depicts the identity — meet precisely at the forward-looking EVW portfolio. The fund in red
is the MOST DIV TOBAM A/B US EQ-A that targets the highest investable DR whereas the fund in
black replicates the S&P500 index. The blue dots depict all other funds. Only the portfolios that
are above the dashed line qualify for being maximally ρ-presentative as they satisfy the necessary
condition DR(w) ≥ DR(wevw)/�(w, wevw) of Proposition 4.5. The green curve corresponds to
portfolios that are indeed maximally ρ-presentative by Proposition 5.7.

8. Conclusions

As an alternative to portfolio weights w, we have introduced the equivalent repre-
sentation offered by the correlation spectrum ρ(w), i.e. the vector of correlations
of a portfolio to all the assets of an investment universe. This new representation
naturally leads to the notion of ρ-presentative portfolio — such as the ERC, MV
and MDP — which allows an investor to be positively exposed to all assets without
necessarily being invested in all of them.

An important contribution of the paper is the concept of maximally ρ-
presentative portfolio, which maximizes its aggregated exposure to all assets. The
real-valued function f that measures the aggregated exposure f(ρ(w)) of the port-
folio is assumed to be symmetric, concave and increasing. We have first proved
that maximally ρ-presentative portfolios are long-only using a key lemma: for any
portfolio that is not long-only, there always exists a long-only portfolio that is more
correlated to all assets. A characterization of this new class of portfolios is then pro-
vided: its members are essentially the long-only portfolios whose exposures form a
nonincreasing function of their volatility-adjusted weights. In particular, this implies

1950034-47

In
t. 

J.
 T

he
or

. A
pp

l. 
Fi

na
n.

 2
01

9.
22

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 9
4.

22
8.

18
7.

12
2 

on
 0

7/
09

/2
1.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



January 29, 2020 16:45 WSPC/S0219-0249 104-IJTAF SPI-J071
1950034

T. Froidure, K. Jalalzai & Y. Choueifaty

that these portfolios are diversified. Using the structure imposed by this character-
ization, we have also proven that these portfolios are rare amongst long-only ones.
However, well-known members of this class of portfolios include the EVW, ERC
and MDPs that can be constrained with maximum weights. Furthermore, we have
shown that the set of maximally ρ-presentative portfolios satisfies an original geo-
metric property, namely it is the union of a finite number of polytopes. Thanks to
this particular structure and the above-mentioned characterization, we have shown
that this set satisfies a local Hölder regularity property, i.e. the distance between
two covariance matrices controls locally the Hausdorff distance between the corre-
sponding maximally ρ-presentative sets. In particular, in this result, we used the
concept of long-only eigenvalue which seems particularly relevant for characterizing
the stability of long-only optimized portfolios.

As we have seen, the aggregation function f provides a fairly general trade-off
between the average and the dispersion of the exposures of a portfolio. Using Schur
concave and increasing functions offers an avenue for further research to generalize
the classic mean-variance approach to portfolio construction.

Having tackled the no-short sales constraints, we have studied the impact of
adding maximum weight constraints to the MDP and MV. The results provided
in this paper extend the analytical results of Jagannathan and Ma (2003), as
their impact on the MV objective is made explicit and known a priori. Further-
more, in a context where the covariance matrix has to be estimated, this yields
a plain interpretation of the impact of these constraints on the objective: reduc-
ing its estimation error. We leave for further research the formal study of the
biases and estimation variance reduction induced by the addition of constraints
on the MDP and MV. It should be noted that even in a setting where returns
are Gaussian, the problem is challenging as it depends on the order statistics of
ρΣ̂(w∗(Σ̂)).

On another topic, many of the arguments in this paper (KKT, ball compactness,
continuity of convex functions, etc.) rely on the fact that the analysis was performed
in a finite-dimensional setting. It would be interesting to extend these results to a
setting where there is a continuum of assets. In particular, we wonder what the set
of maximally ρ-presentative portfolios would be in this case.

Also, the characterization of these rare portfolios that is at the core of this
paper satisfies a purely algebraic property that deserves a more thorough anal-
ysis. Moreover, this problem seems to share connections with for instance task
scheduling problems where the idle time is minimized under all permutations of the
tasks.

Finally, our results are general as they only rely on the positivity of the covari-
ance matrix and provide a unifying framework for many well-known alternative
investment strategies, that are shown to maximize under no constraints their over-
all exposure to all assets. Furthermore, beyond their financial implications, the
findings of this article may be useful in other fields where correlations are used to
measure interactions.
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Appendix A.

A.1. A general composition formula for the spectrum of a

portfolio of portfolios

Proposition A.1. If we have m > 1 portfolios wi ∈ Π that we arrange in columns
in an n×m matrix W and a portfolio of portfolios θ ∈ Rm with θ � 0 and 〈θ,1〉 = 1
such that σ(Wθ) �= 0, then

ρ(Wθ) = d(Wθ)ρ(W )Φσ(wi)i
(θ), (A.1)

where

(i) d(Wθ) = 〈θ,(σ(wi))i〉
σ(Wθ) ∈ [1, +∞),

(ii) ρ(W ) is the n × m matrix whose columns are ρ(wi),
(iii) Φσ(wi)i

(θ) = θ�(σ(wi))i

〈θ,(σ(wi))i〉 ∈ Rm and has nonnegative components that sum to
one.

If we take a k-homogeneous (k > 0) and concave f : Rn → R that we apply to the
columns of ρ(W ) we have a property similar to strict convexity:

f ◦ ρ(Wθ) ≥ d(Wθ)k[f ◦ ρ(W )]Φσ(wi)i
(θ). (A.2)

If for any w ∈ Π, θ ∈ Π+, we consider the function f(x) = 〈x, w
σ(w) 〉, m := n and

W = Id, then

�(w, θ) = DR(θ)〈ρ(w), φ(θ)〉. (A.3)

The latter proposition generalizes Proposition 2.4 and relates it to identity (3.4) in
Lemma 3.4.

A.2. Realized RMr

Let us observe that as for the realized DR, the realized RMr of a portfolio (intro-
duced in Sec. 5.2.1) may be measured without knowing its composition as the real-
ized ρ(w)i is simply the correlation between the time series of w with that of asset
i. Therefore, we can perform another numerical experiment by placing ourselves in
the same setting as in Sec. 7.3 and considering the same universe of 464 stocks and
2278 funds. For each fund w and every integer r ≤ 464, one can compute RMr(w)
using the sample correlation. In Fig. A.1, we plot all the curves r �→ RMr(w) (that
are nondecreasing by definition of RM).

For r ≤ 32, the fund maximizing RMr(w) amongst all funds is the MOST DIV

TOBAM A/B US EQ-A that targets the highest investable DR. Observe that r = 32
is the smallest integer such that this fund has not the highest RMr(w) suggesting
that its implicit volatility-adjusted maximum weight constraint is larger than 3.13%.

By Proposition 7.3, we can also plot in Fig. A.2 the realized DR of all 2278 funds
as a function of their RM32. In addition, we plot in green the constrained MDPs
computed over the whole window for all values of r. These are all forward-looking
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Fig. A.1. (RMr)r in the USA for 2278 funds from January 2013 to March 2017. The red fund aims
to maximize the DR.
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Fig. A.2. Realized DR and 1/RM32 in the USA from January 2013 to March 2017 for 2278 funds
representing about 80% of the total net assets invested in equity funds in the USA in Q1/2016.
The blue star is a theoretical and forward-looking constrained MDP with r=32. The green curve
depicts all forward-looking constrained MDPs. The fund in red is the MOST DIV TOBAM A/B US

EQ-A that targets the highest investable DR whereas the one in black replicates the S&P500 index.
The blue dots depict all other funds.
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portfolios. Observe that the unconstrained MDP is suboptimal in terms of RM32

whereas DR(w∗
32) = RM32(w∗

32)
−1 as proven in Proposition 5.7. Similarly, using for

instance Proposition 3.5, we isolate in the list below the funds that may not be
long-only. Their names clearly indicate that they are indeed all “short” or “bear”
funds:

ADVISORSHARES RANGER EQ BEAR; PROSHARES SHORT S&P500;

DIREXION DAILY FINL BEAR 3X; PROSHARES ULTPRO SHRT DOW30;

DIREXION DAILY S&P 500 BEAR; PROSHARES ULTRAPRO SHORT QQQ;

DIREXION DLY SM CAP BEAR 3X; PROSHARES ULTRAPRO SHRT R2K;

GRIZZLY SHORT FUND; PROSHARES ULTRASHORT DOW30;

PROSH ULTRAPRO SHORT S&P 500; PROSHARES ULTRASHORT QQQ;

PROSHARES SHORT DOW30; PROSHARES ULTRASHORT R2000;

PROSHARES SHORT QQQ; PROSHARES ULTRASHORT S&P500.

PROSHARES SHORT RUSSELL2000;

One could have also used inequality (5.18) or the second assertion of Lemma 4.3
to isolate funds that may not be long-only and thus not maximally ρ-presentative.
Finally, in Fig. A.1, we can also identify funds that are not ρ-presentative as they
have negative RM1.
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